ON THE SUM OF THE ELEMENTS IN THE CHARACTER TABLE OF A FINITE GROUP

LOUIS SOLOMON

In this note we prove an inequality governing the sum of the elements in the character table of a finite group.

Theorem. Let \$5 be a finite group of order g. Let $\chi_{1}, \cdots, \chi_{k}$ be the absolutely irreducible characters of (\$) and let G_{1}, \cdots, G_{k} be representatives for the classes of conjugate elements. Let h be the order of a maximal abelian normal subgroup of \mathbb{B} and let

$$
s=\sum_{i=1}^{k} \sum_{j=1}^{k} \chi_{i}\left(G_{j}\right)
$$

be the sum of the elements in the character table. Then s is a rational integer and

$$
h \leqq s \leqq g
$$

We have equality $s=g$ if and only if (B) is nilpotent of class two, and equality $s=h$ if and only if (S) is abelian.

Proof. Let $G \rightarrow \mathfrak{P}(G)$ be the permutation representation of (\oiint) defined by inner automorphisms

$$
\mathfrak{B}(G) X=G X G^{-1} \quad G, X \in \mathbb{B}
$$

and let ν be the character of \mathfrak{P}. We may write $\nu=\sum_{i=1}^{k} c_{i} \chi_{i}$ where the c_{i} are non-negative rational integers. Since $\nu\left(G_{j}\right)$ is the order of the normalizer of G_{j} we have $\nu\left(G_{j}\right)=g / k_{j}$ where k_{j} is the number of conjugates of G_{j}. It follows from the orthogonality relations that

$$
c_{i}=\frac{1}{g} \sum_{G \in \mathscr{G}} \nu(G) \chi_{i}(G)=\sum_{j} \chi_{i}\left(G_{j}\right) .
$$

Let x_{i} be the degree of χ_{i}. Since the c_{i} are non-negative and ν is a character of degree g, it follows that

$$
g=\sum_{i} c_{i} x_{i} \geqq \sum_{i} c_{i}=s
$$

Thus s is a rational integer and $s \leqq g$. Equality holds if and only if $c_{i}=0$ whenever $x_{i}>1$. Thus equality holds if and only if all the irreducible constituents of ν have degree one. We shall see that this is the case if and only if the commutator subgroup $\left(\xi^{\prime}\right.$ is included in the

Received by the editors December 5, 1960.
center \mathfrak{Z} of $\mathfrak{F S}$, and hence if and only if \mathbb{B} is nilpotent of class two. If all the irreducible constituents of ν are characters λ of degree one, then $\lambda(G)=1$ for all $G \in \mathscr{(H)}^{\prime}$ implies $\nu(G)=g$ for all $G \in\left(J^{\prime}\right.$ and thus $\mathfrak{(3)}^{\prime} \subseteq \mathfrak{Z}$. Suppose conversely that $\mathscr{S H}^{\prime} \subseteq \mathfrak{Z}$. Let \mathfrak{X}_{i} be a matrix representation of \mathcal{F} with character χ_{i}. Then Schur's Lemma implies $\mathfrak{X}_{i}(Z)$ is a multiple of the identity matrix for all $Z \in 3$ and thus $\chi_{i}(Z)$ $=\omega_{i}(Z) x_{i}$ where $\omega_{i}(Z)$ is a root of unity. Thus for $X, Y \in \mathbb{G}$ we have

$$
g=\nu\left(X Y X^{-1} Y^{-1}\right)=\sum_{i} c_{i} x_{i} \omega_{i}\left(X Y X^{-1} Y^{-1}\right)
$$

On the other hand $g=\sum_{i} c_{i} x_{i}$. We use the following familiar property of roots of unity: If $\epsilon_{1}, \cdots, \epsilon_{r}$ are roots of unity and $\sum_{i} \epsilon_{i}=r$ then $\epsilon_{i}=1$ for $i=1, \cdots, r$. Thus, in our case, $c_{i} \neq 0$ implies $\omega_{i}\left(X Y X^{-1} Y^{-1}\right)=1$ and hence $\chi_{i}\left(X Y X^{-1} Y^{-1}\right)=x_{i}$ for all $X, Y \in(J)$. From the formula [2]

$$
\chi_{i}(X) \overline{\chi_{i}(X)}=\frac{x_{i}}{g} \sum_{Y \in \Theta} \chi_{i}\left(X Y X^{-1} Y^{-1}\right)
$$

we see that $c_{i} \neq 0$ implies $\left|\chi_{i}(X)\right|^{2}=x_{i}^{2}$ for all $X \in(3)$ and then $g=\sum_{X \in \Theta}\left|\chi_{i}(X)\right|^{2}=g x_{i}^{2}$ shows $x=1$. Thus all the irreducible constituents of ν have degree one and $s=g$.

To show that $s \geqq h$, let $x=\max _{i} x_{i}$. Then a theorem of Itô [1] shows $x \mid g / h$. But then, since $c_{i} \geqq 0$ we have

$$
s=\sum_{i} c_{i} \geqq \sum_{i} c_{i} \frac{x_{i}}{x}=\frac{g}{x} \geqq h
$$

Clearly if \mathbb{B} is abelian $s=h=g$. Conversely if $s=h$ then $x_{i}=x$ whenever $c_{i} \neq 0$. Thus ν is a linear combination of characters of degree x. But ν is the character of a permutation representation and hence contains the principal character as an irreducible constituent. Thus $x=1$ and $\&$ is abelian. This completes the proof.

References

1. N. Itô, On the degrees of irreducible representations of a finite group, Nagoya Math. J. vol. 3 (1951) pp. 5-6.
2. B. L. van der Waerden, Modern algebra, New York, Ungar, 1950, vol. 2, p. 190.

Haverford College

