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EXTENDING CHARACTERS ON SEMIGROUPS

KENNETH A. ROSS1

W. W. Comfort has proved [l, Theorem 4.2] a theorem on ap-

proximating certain semicharacters on commutative semigroups. He

used the structure theory established in [2] and expressed doubt

as to the necessity of one of his hypotheses, namely core S(x) t^A.

His result suggested the following theorem, which tells us when

a character on a subsemigroup of a commutative semigroup G can

be extended to a character on G. Because of its technical nature we

will not state Comfort's theorem but we will state as a corollary to

our theorem a result which implies his theorem directly (with the

hypothesis core S(x) ^A dropped).

A bounded complex-valued function (ona semigroup G is called

a semicharacter of G if ^(x^O for some xCG and t(xy)=\p(x)\p(y)

for all x, y CG. A character \p is a semicharacter for which |^(x)| =1

for all xCG. We note that it follows from the theorem in [3] that

any character can be extended to a semicharacter.

Theorem. Let G be a commutative semigroup and let SÇ.G be a sub-

semigroup. A character \p on S can be extended to a character on G if

and only if \p satisfies :

(*) a, b C S, x C G, and ax = bx imply \p(a) = \p(b).
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Proof. The necessity of (*) is clear. For the sufficiency, we may

suppose that G has a unit. By Zorn's lemma, it suffices to choose an

x0CG — S and extend if/ to a character i/'o on So= {sxj: sCS, k'èO}

that satisfies (*) on So. Three cases must be considered. We omit the

details which are similar to those in [3 ] but we note that in each case

the crucial matters to be checked are that \po is well-defined and that

\po satisfies (*) on 50. In Cases 2 and 3, the denials of the previous

cases are essential.

Case 1. Suppose there exist ao, boCS, xoCG — S, and yoCG such

that öoXoyo = öoyo. Then extend \p to \po such that ^o(xo) =\p(b0)/i'(a<¡).

Case 2. Suppose Case 1 does not apply but that for some XoCG — S

and some &ià2, we have xJ^GS. Then let k<, be the least positive

integer such that xJ°£S and extend \p to i/'o such that ^o(xo) is any

&oth root of ^(xq0).

Case 3. Suppose Cases 1 and 2 do not apply. Then choose x0CG — S

arbitrarily and extend ib to \po so that ^o(xo) = 1.

We now state the corollary implying [l, Theorem 4.2].

Corollary. Let x be a semicharacter on a commutative semigroup

suchthatx(x)=Oor\x(x)\ =lforallxCG.LetS(x) = \xCG: \x(x)\ =l}
and suppose that A is a subsemigroup of G such that

(1) S(x)QA;
(2) xCG, yCG — A imply xyCG — A;
(3) x, yCS(x), zCA, and xz = yz imply x(x) =x(y)-

Then there is a semicharacter yp on G such that {xCG: |^(x)| =l}

= A and xix) =4/ix) for x£S(x).

Proof. Let xo be x restricted to S(x) and extend to a character

i/'o on A using the preceding theorem. Then define ^(x) =\po(x) for

xCA and ^(x) =0 for xCG — A.

Note. The above theorem and the theorem of [3] lead one to

ask what conditions are necessary to extend semicharacters that never

take the value zero. A natural conjecture would be condition (*)

above and condition (A) of [3 ] :

(A)       a, b C S, x C G, and ax = b imply |^(a)|   ^ |^(¿>)|.

However, consider the following example.2 Let G be the commutative

semigroup generated by {ai, a2, • • • , bi, b2, ■ • ■ , c, d) and satisfying

the relations:

/**\ *1    *2 ,"ll,mS P ,1 *l'    *j' f">l',»>!' P'  ,5'
(**)     ai a2  ■ ■ ■ bi b2   ■ ■ ■ c d   = ai a2    • ■ • bi  b%    ■••cd,

2 Dr. Comfort suggested this simplification of the author's original example.
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whenever g>0, q'>0, kn — mn = kñ —mñ for all n, q — p = q'—p', and

q+ 2Zm-i mH = q'+ S«-i m<í ■ (In the expression (**) all but finitely

many of the exponents are zero.) Let 5 be the subsemigroup of G

generated by {ai, a2, • • • , c) and define ^ on 5 by

Mai aï ■••/) = nf-Y".
n-i \ n /

Then

(i) \p never takes the value zero on S;

(ii) a, bCS, xCG, and ax = bx imply \p(a) ='/'(&);

(iii) a, bCS, x, yCG, and axy = by imply |^(a)| ^|^(ô)| ;

(iv) any extension of ^ to a semicharacter on G takes on the value

zero.

Indeed, if i/'o extends \p, then ipo(d) =0 since anb„d = cd2 implies that

\4/o(d)| á 1/n for all n. The example can be considerably simplified if

only condition (A) is desired rather than condition (iii).
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