REFERENCES

- 1. S. Arima, Commutative group varieties, J. Math. Soc. Japan vol. 12 (1960) pp. 227-237.
 - 2. A. Borel, Groupes linéaires algébriques, Ann. of Math. vol. 64 (1956) pp. 20-82.
 - 3. S. Lang, Abelian varieties, New York, Interscience, 1959.
- 4. M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. vol. 78 (1956) pp. 401-443.
- 5. ——, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl. vol. 43 (1957) pp. 25-50.
- 6. —, A universal mapping property of generalized jacobian varieties, Ann. of Math. vol. 66 (1957) pp. 80-88.
 - 7. A. Weil, Variétés abéliennes et courbes algébriques, Paris, Hermann, 1948.

University of California, Berkeley

EXTENDING CHARACTERS ON SEMIGROUPS

KENNETH A. ROSS¹

W. W. Comfort has proved [1, Theorem 4.2] a theorem on approximating certain semicharacters on commutative semigroups. He used the structure theory established in [2] and expressed doubt as to the necessity of one of his hypotheses, namely core $S(\chi) \neq \Lambda$. His result suggested the following theorem, which tells us when a character on a subsemigroup of a commutative semigroup G can be extended to a character on G. Because of its technical nature we will not state Comfort's theorem but we will state as a corollary to our theorem a result which implies his theorem directly (with the hypothesis core $S(\chi) \neq \Lambda$ dropped).

A bounded complex-valued function ψ on a semigroup G is called a *semicharacter* of G if $\psi(x) \neq 0$ for some $x \in G$ and $\psi(xy) = \psi(x)\psi(y)$ for all $x, y \in G$. A *character* ψ is a semicharacter for which $|\psi(x)| = 1$ for all $x \in G$. We note that it follows from the theorem in [3] that any character can be extended to a semicharacter.

THEOREM. Let G be a commutative semigroup and let $S \subseteq G$ be a subsemigroup. A character ψ on S can be extended to a character on G if and only if ψ satisfies:

(*)
$$a, b \in S, x \in G, and ax = bx imply \psi(a) = \psi(b).$$

Received by the editors June 20, 1960 and, in revised form, October 27, 1960.

¹ Supported by a National Science Foundation pre-doctoral fellowship.

PROOF. The necessity of (*) is clear. For the sufficiency, we may suppose that G has a unit. By Zorn's lemma, it suffices to choose an $x_0 \in G - S$ and extend ψ to a character ψ_0 on $S_0 = \{sx_0^k : s \in S, k \ge 0\}$ that satisfies (*) on S_0 . Three cases must be considered. We omit the details which are similar to those in [3] but we note that in each case the crucial matters to be checked are that ψ_0 is well-defined and that ψ_0 satisfies (*) on S_0 . In Cases 2 and 3, the denials of the previous cases are essential.

CASE 1. Suppose there exist a_0 , $b_0 \in S$, $x_0 \in G - S$, and $y_0 \in G$ such that $a_0x_0y_0 = b_0y_0$. Then extend ψ to ψ_0 such that $\psi_0(x_0) = \psi(b_0)/\psi(a_0)$.

CASE 2. Suppose Case 1 does not apply but that for some $x_0 \in G - S$ and some $k_1 \ge 2$, we have $x_0^{k_1} \in S$. Then let k_0 be the least positive integer such that $x_0^{k_0} \in S$ and extend ψ to ψ_0 such that $\psi_0(x_0)$ is any k_0 th root of $\psi(x_0^{k_0})$.

CASE 3. Suppose Cases 1 and 2 do not apply. Then choose $x_0 \in G - S$ arbitrarily and extend ψ to ψ_0 so that $\psi_0(x_0) = 1$.

We now state the corollary implying [1, Theorem 4.2].

COROLLARY. Let χ be a semicharacter on a commutative semigroup such that $\chi(x) = 0$ or $|\chi(x)| = 1$ for all $x \in G$. Let $S(\chi) = \{x \in G: |\chi(x)| = 1\}$ and suppose that A is a subsemigroup of G such that

- (1) $S(\chi) \subseteq A$;
- (2) $x \in G$, $y \in G A$ imply $xy \in G A$;
- (3) $x, y \in S(\chi), z \in A$, and xz = yz imply $\chi(x) = \chi(y)$. Then there is a semicharacter ψ on G such that $\{x \in G: |\psi(x)| = 1\}$ = A and $\chi(x) = \psi(x)$ for $x \in S(\chi)$.

PROOF. Let χ_0 be χ restricted to $S(\chi)$ and extend to a character ψ_0 on A using the preceding theorem. Then define $\psi(x) = \psi_0(x)$ for $x \in A$ and $\psi(x) = 0$ for $x \in G - A$.

Note. The above theorem and the theorem of [3] lead one to ask what conditions are necessary to extend semicharacters that never take the value zero. A natural conjecture would be condition (*) above and condition (A) of [3]:

(A)
$$a, b \in S, x \in G, \text{ and } ax = b \text{ imply } |\psi(a)| \ge |\psi(b)|.$$

However, consider the following example.² Let G be the commutative semigroup generated by $\{a_1, a_2, \dots, b_1, b_2, \dots, c, d\}$ and satisfying the relations:

$$(**) \quad a_1^{k_1} a_2^{k_2} \cdots b_1^{m_1} b_2^{m_2} \cdots c^p d^q = a_1^{k_1'} a_2^{k_2'} \cdots b_1^{m_1'} b_2^{m_2'} \cdots c^{p'} d^{q'},$$

² Dr. Comfort suggested this simplification of the author's original example.

990 K. A. ROSS

whenever q>0, q'>0, $k_n-m_n=k_n'-m_n'$ for all n, q-p=q'-p', and $q+\sum_{n=1}^{\infty}m_n=q'+\sum_{n=1}^{\infty}m_n'$. (In the expression (**) all but finitely many of the exponents are zero.) Let S be the subsemigroup of G generated by $\{a_1, a_2, \dots, c\}$ and define ψ on S by

$$\psi(a_1^{k_1}a_2^{k_2}\cdots c^p) = \prod_{n=1}^{\infty} \left(\frac{1}{n}\right)^{k_n}.$$

Then

(i) ψ never takes the value zero on S;

(ii) $a, b \in S, x \in G$, and ax = bx imply $\psi(a) = \psi(b)$;

(iii) $a, b \in S, x, y \in G$, and axy = by imply $|\psi(a)| \ge |\psi(b)|$;

(iv) any extension of ψ to a semicharacter on G takes on the value zero.

Indeed, if ψ_0 extends ψ , then $\psi_0(d) = 0$ since $a_n b_n d = cd^2$ implies that $|\psi_0(d)| \leq 1/n$ for all n. The example can be considerably simplified if only condition (A) is desired rather than condition (iii).

REFERENCES

- 1. W. W. Comfort, The isolated points in the dual of a commutative semi-group, Proc. Amer. Math. Soc. vol. 11 (1960) pp. 227-233.
- 2. E. Hewitt and H. S. Zuckerman, The l_1 -algebra of a commutative semigroup, Trans. Amer. Math. Soc. vol. 83 (1956) pp. 70-97.
- 3. K. A. Ross, A note on extending semicharacters on semigroups, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 579-583.

University of Washington