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1. Introduction. Mixed boundary conditions of the form

du
(1) -1- Xu = 0

dy

have been used with success in electromagnetic theory to describe

materials of high, but imperfect conductivity [l ; 2 ; 3 ]. The parameter

X can be chosen to accurately reproduce the phenomenology at the

conductor's surface; other choices of X lead to a boundary condition

which can describe reactive surfaces that support slow waves or sur-

face waves [4; 5; 6].

The utility of the boundary condition (1) to model the physics at

complex interfaces has led to an investigation [7] of another bound-

ary condition with more parameters

1   du d2u
(2) -Y Au+B-= 0, i= +(- l)i/2,

i   dy dx2

which can be chosen to approximate more involved situations, e.g.

diffraction at a dielectric-dielectric interface. The physical justifica-

tion for this procedure is presented elsewhere [7]. Here we seek to

show that this is a well-posed approach by proving the uniqueness of

the solution of the standard problem of a radiating line source above

a plane boundary at which a condition of the form (2) is imposed.

The proof of uniqueness is nonstandard owing to the presence of the

second derivative in the boundary condition (2).

2. Statement of the problem. We seek to show that there exists

one and only one solution of the reduced wave equation

(3) (V2 + k2)u = S(x)5iy - h), y= 0,

with a source at (0, h), which satisfies the boundary condition (2)
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at y = 0. For simplicity, we shall confine our discussion to the case

where k in (3), and A and B in (2) are real. It is customary to specify

the radiation condition at infinity

Vdu 1
(4) limp1'2-iku    = 0, 0 = 6 g t,

p->» Ldp J

which is written in terms of the polar coordinates

p2 = x2 + y2,

y
a = arc tan — •

However, for our proof, we shall require a more explicit statement at

infinity.

3. Existence. A solution of (2), (3), and (4) which has the follow-

ing behavior at infinity

gikp

(6) lim u(p, d) = p(d) —— + 0[(kp)-*'2], 0 ú 0 á t,
p^»                           (kp)1/2

can be obtained [7] by Fourier transforms, where p(6), the far-field

amplitude or pattern function, is an analytic function of 0 explicitly

determined by A, B, h and k.

4. Uniqueness. We utilize the far-field behavior (6), rather than

the usual Sommerfeld radiation condition (4), of u(x, y) to prove the

uniqueness theorem:

Theorem. Let u(x, y) be any regular function which satisfies (2)

and (3) with A and B as arbitrary real constants. If u(x, y) can be

developed as

(7) u(P, 8) = g(B) -i—- + 0[ikP)-*>2], QÚBÚt,
(kp)112

for kp~5>l, where g(6) is any pattern function, then u(x, y) is unique.

Proof. Let u(x, y) =ui(x, y) —u2(x, y) where Mi and m2 are any two

functions that satisfy (2), (3), and (7). Then u(x, y) is a solution of

the homogeneous wave equation

(8) (V2 + k2)u(x, y) = 0,

and in addition satisfies (3) and (7). Construct the auxiliary function

v(x, y) in terms of u(x, y) and its derivatives as
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(9)
1    du d2U

v(x, y) =-1- Au + B-»
i   dy dx2

then v(x, y) satisfies Dirichlet conditions at y = 0 as well as the homo-

geneous wave equation for y^O; we shall first show that v must

vanish identically for y^O. This can be seen by an application of

Green's theorem about a semi-circle Y of radius p, to v(x, y) and its

conjugate v*(x, y).

>~ *

Namely, if A(Y) is the area bounded by Y, we have

r /   dv       dv*\ c
I   ( v*-v-) ds =  j       (v*V2v - vV2v*)dr,

J r\     dn an/ J a(T)

and by virtue of the boundary condition  (2), which implies that

v*(x, 0)=v(x, 0)=0, it follows that

/"/    dv         dv*\ C
lv*-v-\pdd =   I       (v*V2v - vV2v*)dr.

0     \      dp               dp ) J A(T)

Since k2 is real, the integral over A(Y) vanishes identically which

leaves us with

(10)
/'T /     dv dv*\

(v*--v—)pd8 = 0.
a   \    dp dp /

Let p—»oo, and use the condition (7) to change (10) to the form

(ii) fTq(8)q*(e)de = o
J 0
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where q(0) is the pattern function for v(x, y) ; this in turn implies

q(B) =0 a.e., 0—8 —t. The function v(x, y) therefore has a vanishing

far-field amplitude in this region of definition y = 0. We wish to apply

a theorem of Rellich [8] in order to show v = 0. The relevant theorem

applies to a function regular outside some circle. We therefore pro-

ceed to extend v as follows: Since v(x, y) vanishes on the x-axis it

can be analytically continued into the lower half-plane by the reflec-

tion principle. Hence v is now regular in the complete x,y-plane.

We are now in a position to apply Rellich's Theorem. This theorem

states that zero is the only wave function which is regular in the

entire x, y-plane, and which vanishes more rapidly than 0(l/p1/2) for

p—><» and 6CI where 7 is any interval [8J. Equation (11) therefore

implies that v^O.

These results show that any solution u(x, y) of the homogeneous

wave equation with the boundary condition (2) satisfies the differ-

ential equation

1   du d2u
(12) -YAu+B-=0

i   dy dx2

for all y^O. It is a simple matter to show that this is inconsistent

with the assumed asymptotic development (7) thus yielding the de-

sired contradiction. To obtain this result, substitute (7) into (12) and

obtain

oikp

(13) g(8) [k sin 8 + A - Bk2 cos2 8]-= 0[(kp)~312],    0 = 8 = t.
(kp)1'2

Equation (13) can be satisfied only if g(d) vanishes, or else, if

(14) k sin 8 + A - Bk2 cos2 8=0, 0 ^ 8 ^ t.

Since (14) is a quadratic in sin 6 it follows that the equation (14) can

be satisfied for at most two values of sin 6. Hence

(15) g(8) =0, 0 ^ 8 g t.

A vanishing far-field amplitude (15) is not sufficient to imply that

u(x, y)=0. We shall complete the proof by an appeal to Stokes'

theorem. Since u(x, y) is a wave function, the integral

(16) f      (uV2u* - u*V2u)dr = 0
J AiT)

vanishes for any region bounded by a closed curve Y in the upper half-

plane. In particular, if Y is a semicircle of radius p we can compute
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the integral (16) in another way. If the Laplacian operates on any

wave function satisfying (12) we obtain

1    du      B   d2u
V2u= - k2u =-1-,

iA   dy       A   dx2

so that (16) becomes

/l          *         *             T>        * *   j-(UUy   +    U    Uy)    -\-iUUXX    —    UxxU    )        ̂ T

.4(dL      i A                                A A

r     r      l    d B   d "i
=   | -iuu*)-iuu* — uxu*)   dr;

Jait)L     iA   dy A   dx J

whence, by Stokes' theorem

r   B 1
0=1    — iuu* — uxu*)dy -\-uu*dx,

J v  A iA

or

0 = 7i + /, + h

where

B
h = ~A

A * o
/iuu* — uxu*)p cos ddd,

o

Ii =-|    uu*p sin ddd,
i A Jo

1    r>

i A J -
*dx.

iA

As p—>=o the first two integrals 7i and 72 vanish by (15) since both u

and Ux behave like p~3'2 as |p| —**, 0^6^t. We are left with

/'
uu*dx = 0

so we conclude that u must vanish on the boundary: y = 0. Hence

m(x, y)—0, y^O by the same argument previously applied to the

function v.

5. Concluding remarks. Similiar analysis will prove uniqueness

theorems involving boundary conditions of the form

1   du     ¿L       d2iu
-+ Z A<^7 = o.
i   dy      ,-=i        dy21
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That is, it is possible to have available as many parameters as neces-

sary to construct boundary conditions which model diffraction at

various interfaces. However, these constants can only be coefficients

of even order derivatives or reciprocity will be sacrificed [7].
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