
A POISSON KERNEL FOR CERTAIN HOMOGENEOUS SPACES

ROBERT HERMANN1

1. Introduction. The aim of this note is to prove some of the re-

sults of D. Lowdenslager [ó] on potential theory in symmetric,

bounded domains in a more general setting. In particular, our meth-

ods are not restricted to complex manifolds nor to spaces imbeddable

in Euclidean space.

The main result is Theorem 3.1, which presents a Lie group-

theoretic method for constructing a Poisson kernel for certain homo-

geneous spaces G/K, with G a noncompact Lie group, K a compact,

connected subgroup.

In section 2 we present several remarks that are meant to indi-

cate how some of the results in [ó] on the Bergman-§ilov boundary

of a Cartan domain can be adapted to other situations, namely when

a homogeneous space is equivariantly imbedded in a bigger space. Un-

fortunately, we do not yet know of any examples other than the

Cartan domains where all of this machinery can be applied, although

there are indications of this possibility in Karpelevic's work [5].

However, it is at least evident that results such as these that are not

so dependent on explicit calculation as Lowdenslager's [6] are useful

in dealing with the exceptional Cartan domains.

2. The Bergman-Silov boundary. All manifolds, Lie groups, action

of Lie groups on manifolds, tensor-fields, maps, etc. will be of

differentiability class C°° unless mentioned otherwise. We follow

Chevalley [3] for Lie group and differential-geometric notations,

with some of the modifications suggested in [l]. All manifolds will

be assumed to be connected and paracompact. Let M be such a

manifold. For x£ Af, Mx is the tangent space to M at x. If <b: M—*M'

is a map of manifolds, <p*: Ai*—»Af¿(l) denotes the linear map that

<p indicates on tangent vectors. If u is a differential form on M', <¡>*(o>')

denotes the form on M induced by the map <b.

Let G be a Lie group that acts on M. This means that, for each

gCG, there is a diffeomorphism TQ: M—>M such that:

(a) Ttm = TBlT„t for glt g2CG. M IM
(b) T. = identity map of M, where e is the^identity element of G.

We write:

Te(x)=gx or g-x for gCG, xCM. Let G be the Lie algebra of G.
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Let ViM) be the set of vector fields on M, considered as an infinite

dimensional Lie algebra with respect to the Jacobi bracket operation.

If XC ViM), and w is a differential form on M, let X(co) denote the

Lie derivative of « by the vector field X. (This is denoted by 0(X)(co)

in [2], to which we also refer for the definition of this operation.)

Let C°°(Af) be the ring C°° real-valued functions on M. The opera-

tion of Lie derivation with respect to the vector field X on M defines

a derivation of Cœ(Af), i.e., X defines a first-order, linear differential

operator on M.

More or less as definition of the Jacobi-bracket operation, we have:

[X, Y](J) = XiYif)) - YiXif)) for X, Y C V(M),fCC(M).

The action of G on if defines a Lie-algebra homomorphism

p: G->V(M). As definition:

For XCG, xCM, p(X)(x) is the tangent vector to the curve

/—>Exp(iA')x at t = 0. One shows that:

(2.1) For g C G, X C G,f C C<°(M), T*(p(X)if)) = p(Adg(X))T*(f).

For xGAf, let Gx be the orbit of G at x, Lx be the isotropy group

of G at x. Gx is isomorphic in a natural way to G/Lx, the space of

right cosets.

If 5 is a subset of M such that G-SCS, define C°(S) (resp. CM(S))

as the ring of all real valued, continuous (resp. not necessarily con-

tinuous) functions that are C00 when restricted to the orbits of G on S.

We suppose that G has a nondegenerate quadratic form ( , )

that is invariant under Ad G. Choose a basis for G,

(Xi), 1 = i á », such that

(2.2) iXi,X,) =0 if i*j.

Set Ai= (Xi, Xi). Define the second-order linear differential opera-

tion A on C"(Af) as follows:

(2.3) A(/) - ¿ A iPÍXMXt) if), for / C C»(M).
t-i

It is clear that it is independent of the basis chosen for G satisfying

2.2. Also, note that 2.1 implies that A is invariant under the action

T*(A(f)) = AT*if)      for/ C C-(Jf), GCG.
Note that:

For XCGJC C°°(M), P(X)(p(X)(f))(x) = —/(Exp (Xt)-x)
or
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In particular, if XCLX, the Lie algebra of the isotropy group at x,

thenp(X)(p(X)(f))(x)=0.
Suppose that the basis (Xi) is chosen so that Xit l^i^m spans

Lx, and Xt, m + l=i = n spans Mx, the orthogonal complement of

Lx with respect to ( , ). Then,

(2.4) A(f)(x) -   Y  AipiXi)ipiXi)if))ix).
i—m+l

As an application of these remarks, suppose that the form ( , )

restricted to each Mx is positive definite and G is transitive on M, i.e.,

the map X—->p(X)(x) of G-^>MX is onto with kernel Lx. This defines

an isomorphism of Mx with Mx, hence a positive-definite quadratic

form on Mx, i.e., M is a Riemannian manifold, with G acting as a

group of isometries. It is known [7] that, for each XCMX, the curve

/^Exp(¿X)-x is a geodesic. Then 2.4, together with the classical

formula for the Laplacian operator in Riemann normal coordinates,

prove the following result:

Proposition 2.1. With the assumptions described above, A is the

Laplace operator of the Riemannian metric on M invariant under G.

We return now to the case where G is not necessarily transitive on

M. Let 5 be a subset of M such that G-SCS. Each XCG defines a

derivation of CX(S) that, since piX) is tangent to S, is compatible

with the derivation p(X) : C°°(Af)—*C°°(Ai) and the restriction map-

ping: CM(Af)-»C°°(S). Formula 2.3 then defines, ior fCC"(S), a differ-

ential operator

AS:C">(S)^>C°°(S).

It is clear that this is equivalent to saying that the operator A,

when expressed in local coordinates about a point of S, has no com-

ponent normal to 5.

Now, fix a point x0GAf. Let D = G-x0, L = LXo, M=MXo, L = KXo.

Let D be the closure of D in M, and let F = D — D be its boundary. D

and F are invariant under the action of G. Suppose the basis (Xi) of

G is chosen to satisfy 2.2 and so that (Xx), l^i^m, is a basis for L,

(Xi), m + l^í'á», is a basis for M, and, for all such i, (Xit X{)

— Ai>0. Then, we see from 2.4 that:

AD is a positive definite, second-order differential operator on the

manifold D. Ap is a positive semi-definite operator on F.

Definition 2.1. The Bergman-Silov boundary of D is the set B oí

xCF such that: AF(/)(x)=0 for all fCC<°(F), i.e. B is the set of

points where the coefficients of the operator AF vanish identically.
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It is clear from Lowdenslager's work [6 ] that B defined in this group-

theoretic way has a close relation with the points of F at which func-

tions in C°°(D) that are harmonic with respect to AD take their maxi-

mum value. Along this line, we now prove, using the same me.thods,

the following generalizations of Lemma 1 of [6J:

Proposition 2.2. Suppose thatfCC^ÇD) satisfies: Aif) = Q and that
F is compact.

(a) If there is an uCCx(D) such that A(co)(x) >0 for all xCD-B,

then f must take its maximum value at a point of B.

(b) If f has a strong relative maximum at xCF, then xCB.

Proof. If (a) were not true, there would bean e>0 such that/+eco

takes a maximum value outside B. But, A(/+eco) >0 outside B, and

A=Ap on F, which contradicts the fact that the Hessian of /+««

must be negative semi-definite at some point outside B.

Part (b) follows from the same argument on noting that such an «

can always be chosen locally about x if x£.B:/+eco can be made to

have a maximum value at a point arbitrarily close to x by choosing

e sufficiently small, since/ takes a strong relative maximum at x. This

again is a contradiction.

Recall that in Lowdenslager's situation, where M is Euclidean

space, co can be taken as a convex function.

3. The Poisson kernel. From now on, suppose that D and B are

C°° manifolds on which a connected Lie group G acts. We do not as-

sume that B lies on the boundary of D in any sense. We assume fur-

ther that G has a quadratic form invariant under Ad G that enables

us to define invariant second-order linear operators on B and D, Ab

and Ad. The problem to be discussed deals with conditions that at

least some of the functions fCCxiD) harmonic with respect to AD

can be expressed as integrals with respect to a "Poisson kernel" of

functions on B.

Fix a point x0CD and let L( = LXo) be the isotropy group of G at

xo. We suppose that:

(3.1) B has a C°° measure db (i.e., an everywhere nonzero differen-

tial form of maximal dimension) which is invariant under the

action of ii on B.

For gCG (resp. XCG) let /„ (resp. Jx) be the Jacobian of Ta

(resp. p(A)) with respect to db, i.e.

(3.2) T*idb) = J0db,

(3.3) PÍX)idb) = Jxdb.



896 ROBERT HERMANN [December

(Recall that p(X) denotes the operation of Lie derivation with

respect to the vector-field on B defined by XCG.)

We see from 3.2 and 3.3 that:

(3.4) Jgm = Tai(J„ÙJaî for g, g2 C G.

(3.5) /[x.yj = p(X)(Jy) - P(Y)(JX)        for X, Y C G.

(3.6) JAd„(x) = T*iJx)Jg ioigCG,XC G.

A function Kix, b)CCx(D, B) is said to be an equivariant kernel for

DXB providing:

(3.7) Kigx,b) = Kix,g-1b)Jg-iib)       for all gC G, b C B, x C D.

Let C¡¡(B) be the subring of C°°(B) of functions with compact support.

A kernel K(x, b) satisfying 3.7 defines a linear mapping K: C£(B)

->C°°(Z?) as follows:

(3.8) K(f)(x) = J Kix, b)fib)db for / C C"(B).

Note that:

(3.9) T*(K(f)) = KiT*if)) for/ G c'(B), g C G.

Differentiating 3.7 with respect to g, we have:

(3.10) piXUKix, b)) = - piXUKix, b)) - K(x, b)Ix(b)

for nil X C G, x C D, b C B.

(p(X)x and p(X)b denote partial Lie derivation with respect to the

vector field defined by X on the x-space (i.e., D) and the ¿»-space

(i.e., B).) Applying p(X)x to 3.10 on both sides, and using 3.10 again,

we have:

p(X)x(p(X)x(K(x, b)))

(3.11) = p(X)h(p(X)b(K(x, b))) + 2p(X)b(K(x, b))Ix(b)

+ K(x, b)p(X)b(Jx(b)) + ÜT(x, b)(Ix(b))2.

For XCG, xCD, define Fx,xCCa(B) by:

(3.12) Fx,x(b) = [2p(X)b(K)Jx + Kp(X)b(Jx) + KJx](x, b),

i.e. everything but the first term on the right-hand side of 3.11. This

is the "obstruction" to changing p(X)xp(X)x into p(X)bp(X)b.

(3.13) Tk*(Fx.x) = FAdHX).k-ix, using 2.1, 3.6 and 3.7.

We are now ready to state the main result :
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Theorem 3.1. Suppose that, in addition to the conditions stated above,

(a) L is transitive on B and G is transitive on D,

(b) AB is identically zero,

(c) K(x, b) satisfies 3.7 and

(d) fK(x, b) db= 1 for all xCD.
Then K(x, b) is, for each b held fixed, a solution of the equation Ad = 0.

In particular, K maps all of C£(B) into solutions of the differential

equation : Ad = 0.

Proof. With condition (b) we have, by 3.11,

n

(3.14) ADK(x, b) - Y AiFxU°)-
i—l

Conditions (b) and (d) imply that

(3.15) f Y AiFXi.xib)db = 0.
J   «~i

Notice, however, that for kCK,

(3.16) £^Ad*(x4>.„(**)  = Y AiFx^ib).
i=l ¿-1

Referring to 3.12, 3.6, and 2.1, we see that:

n n

(3.17) Y AiFA.dk(xi),x(l=  Y AiFxt.xa,
1=1 t=l

i.e., using 3.16 and condition (a), the integrand in 3.15 is constant.

Hence :

(3.18) Y AiFx^ib) = 0 for all b C B.
t'=l

For each bCB, let KbCCx(D) be the function:

Kb(x) = K(x, b) for x C D.

Then, by 3.14 and 3.18,

(3.19) Az,(A¡,)(x0) = 0 for all b C B.

To finish the proof, we must show that this holds for all points of D.

Suppose that x = g-x0CD for some gCG.

AD(Kb)(x) = T*(ADKb)(x0),

= Ad(T*(Ki,))(xo), using invariance of Ad under G,

= AD(Kg-ibJg-l(b))(xo),by3.7,

= AD(K0-ib)(xo)Jg-i(b) = 0, by 3.19.
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This completes the proof of Theorem 3.1.

Proposition 3.2. Suppose that G acts on manifolds D and B, that B

is compact, L CG is the isotropy sub group of G at xoCD, that K is

transitive on B, and that the isotropy subgroup Lx of G at each xCD is

compact.

Then, there is a C°° measure db on B and a function K(x, b) C C°°(D, B)

satisfying 3.7 and the condition (d) of Theorem 3.1.

Proof. Since Lx and B are compact, there is a C°° measure dxb on

B invariant under Lx such that

I dxb = 1 for each x C D.
J B

Set: db = dxJb, and dxb = K(x, b)db.
One sees easily that A^(x, b) satisfies the required conditions. Note

also that :

(3.20) K(x, b) = Jg-i(b) ii x = g-xo.

Remarks, (a) Boundary behavior. For XCG, suppose that there

is a subset A CB of measure zero and a point b0CB such that :

(3.21) ForallbCB - A,   lim Exp(iA)-ô = ¿V
t-*ao

Following Lowdenslager [6] we note then that:

(3.22) lim   | K(Exp(tX)-x0,b)f(b)db=f(bo)(use3.20) forallfCC°°(B),

i.e. the function in D defined by the Poisson formula has the correct

boundary behavior along the ray starting from xo determined by X.

One can prove that the following conditions imply 3.21.

(3.23) (a) B is compact.

(b) There is a Riemannian metric on B and afCCx(B) such

that p(X) on B is the gradient field of/

(c) / has only one relative maximum, at b0.

(d) Let NCB be any connected component of the set of other

critical points of /. We require that there be a neighbor-

hood U oí N and a submanifold 5 of U of lower dimension

containing N such that, for bCU, the curve t—>Exp tX-b

approaches N as /—>oo if and only if bCS. (S is a stable

manifold for the vector field p(X) near its critical set).

The point is that, at least for the case where D is a Cartan domain
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and M is its compactification, it can be shown that these conditions

follow from rather general differential-geometric arguments. We will

come back to this point of view in a later work.

(b) The general setting of Theorem 3.1. Theorem 3.1 involves a

condition for commutativity of equivariant differential and integral

operators. For other sufficient conditions for this sort of phenomenon,

see [8].

(c) Application to the Cartan domains. Suppose that D is a Cartan

domain and that M is the compact Kahler manifold in which D is

equivariantly embedded as an open set. Then, as above, D = G/L,

where G is an non-compact, simple Lie group, L is a maximal con-

nected compact subgroup of G, M = GU/L, where Gu is a compact real

form of the complex simple Lie group determined by G. G/L is then

a Riemannian symmetric space, and G admits a decomposition

L©Af, with [Af, Af]CL. Let if be a maximal abelian subalgebra of

M. Let W be a Weyl chamber of H. Define B CD — D as in definition

2.1. It follows from the results of [4] that lim*,« Exp(Xí) -XoG-ß for

XCW, and for X lying on the boundary of W, limi<00 Exp Xt-xQCB.

R. Bott and A. Koranyi have shown (to appear) that there is a

boCB such that: lim^^ Exp Xt-Xo = b0 for all XCW, and that L acts

transitively on the orbit of G at b0. (We can show this also with the

geometric method described in remark (a) above.) It follows from

these facts that G and L both act transitively on B.

All of these facts are due to D. Lowdenslager, ([ó], together with

some unpublished work) in the classical cases. However, it is useful

for the sake of possible generalizations to have general proofs of these

results.
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