ERRATA, VOLUME 11

Charles Hobby and C. R. B. Wright, A generalization of a theorem of N. Itô on p-groups, pp. 707-709.

Proof of Theorem 1. Let *H* be a subgroup (normal or not) of a finite *p*-group, *G*. A routine argument using the linearity of the commutator shows that $(H\phi(G))_n = (HG_2P(G))_n \subseteq H_nG_{n+1}P(G_n)$.

Now if $H_n \subset G_n$, it follows from Lemma 2 that $H_n G_{n+1} \subset G_n$. But then, since $P(G_n) \subseteq \phi(G_n)$, $H_n G_{n+1} P(G_n) \subset G_n$. Hence, if $H_n \subset G_n$, then $(H\phi(G))_n \subseteq H_n G_{n+1} P(G_n) \subset G_n$, as desired.

Maurice Sion, Topological and measure theoretic properties of analytic sets, pp. 769–776.

The definition of an analytic set in Definition 4 of §2, p. 769 should read:

A is analytic iff A is the continuous image of a $K_{\sigma\delta}(X)$ for some Hausdorff space X.

On p. 773 line 9 from the bottom should read

$$a < \phi^*\left(f\left(D \cap \bigcap_{i=0}^{n+1} d(i, k_i)\right)\right)$$
.

On p. 773 the last line should read

$$a < \phi^*(f(D \cap A_n)) \leq \phi^*(U)$$

I am indebted to B. Fuglede for pointing out that the definition of an analytic set as the continuous image of a $K_{\sigma\delta}(X)$ for some X, not necessarily Hausdorff, is much too wide since the intersection of two compact sets in a non Hausdorff space is not necessarily compact.

ERRATA, VOLUME 12

S. M. Shah, On the order of the difference of two meromorphic functions, pp. 234-242.

Page 238, line 9: add to the right-hand side expression of (2.11)

$$-N_2(r) + O(\log r).$$

F. Sunyer i Balaguer, A theorem on overconvergence, pp. 495-497.

Page 496, line 7: " $D_2 \subset D_1$ " should read " $D_2 \subset D$ ". Page 496, line 26: "{|z| < r}" should read "{|z| < r/2}".