PROOF OF A CONJECTURE ABOUT MEASURABLE SETS ON THE REAL LINE

J. J. SCHÄFFER

In [1, p. 243] the author formulated a conjecture concerning Lebesgue-measurable sets on the real line; this conjecture was connected with an analysis of the structure of a class of translation-invariant function spaces. The purpose of this note is to give a proof of that conjecture. The proof is based on an idea of E. Calabi. The research was carried out while the author held a fellowship granted by the John Simon Guggenheim Memorial Foundation.

Let R denote the real line and let μ be Lebesgue measure on R. The sign \setminus is used to denote set-theoretical differences. If F, $F' \subset R$ are μ -measurable, we say that F is essentially contained in F' if $\mu(F \setminus F') = 0$.

THEOREM. If $E \subset R$ is μ -measurable and $\mu(E) > 0$, there exists a closed, bounded set $E' \subset R$ with $\mu(E') > 0$, such that E is not essentially contained in any finite union of translates of E'.

PROOF. For every measurable set $F \subset R$ with $\mu(F) > 0$ and for every real s > 0 we define

$$\omega(s; F) = s^{-1} \cdot \inf_{t \in R} \mu(\{(t + [0, s]) \setminus F\}).$$

Obviously, $0 \le \omega(s; F) \le 1$. Since $\mu(F) > 0$, there exists a point $t_0 \in F$ of density 1 with respect to F, and therefore

$$\lim_{s\to 0} s^{-1} \cdot \mu(\{(t_0 + [0, s]) \setminus F\}) = 0;$$

a fortiori we have

(1)
$$\lim_{s\to 0}\omega(s;F)=0.$$

Let E be the given set. On account of (1) we may construct a sequence of positive integers $\{m(n)\}$ such that the following two conditions are satisfied for all $n=1, 2, \cdots$:

$$(2) m(n+1) > m(n) + n + 1,$$

(3)
$$\omega(2^{-m(n)+1}; E) < 2^{-3n^2}.$$

We define the closed set

$$A = R \setminus \bigcup_{n=1}^{\infty} \bigcup_{r=-\infty}^{\infty} (2^{-m(n)}r + (0, 2^{-m(n)-n-1})).$$

Received by the editors June 24, 1960.

The open intervals $2^{-m(n)}r + (0, 2^{-m(n)-n-1}), r = 0, \pm 1, \pm 2, \cdots$, shall be called the *holes of order n of A*; the images of these holes under the translation $t \rightarrow t' + t$ are the *holes of order n of t' + A*. We now set

$$E' = [0, 1] \cap A,$$

so that E' is closed and bounded, and

$$\mu(E') \ge 1 - \sum_{n=1}^{\infty} \sum_{r=0}^{2^{m(n)}-1} 2^{-m(n)-n-1} = 1 - \sum_{n=1}^{\infty} 2^{-n-1} = 1/2 > 0.$$

We claim that E is not essentially contained in any finite union of translates of A, let alone of E'. Assume, by contradiction, that E is essentially contained in $B = \bigcup_{j=1}^{k} (t_j + A)$ for some positive integer k and some $t_1, \dots, t_k \in \mathbb{R}$. From the definition of $\omega(s; F)$ and from (3) it follows in particular that

(4)
$$\omega(2^{-m(k)+1}; B) \leq \omega(2^{-m(k)+1}; E) < 2^{-8k^2}.$$

Let now I be any closed interval of length $2^{-m(k)+1}$; it contains at least one complete hole of order k of t_1+A ; this hole, being of length $2^{-m(k)-k-1} > 2^{-m(k+1)}$ (by condition (2)), contains at least $(2^{-m(k)-k-1}/2^{-m(k+1)})-1 \ge 2^{m(k+1)-m(k)-k-2}$ complete holes of order k+1 of t_2+A ; each of these holes, being of length $2^{-m(k+1)-k-2} > 2^{-m(k+2)}$ (by condition (2)), contains at least $(2^{-m(k+1)-k-2}/2^{-m(k+2)})-1$ $\ge 2^{m(k+2)-m(k+1)-k-3}$ complete holes of order k+2 of t_2+A . Continuing in this way, we find certain holes of order 2k-1 of t_k+A contained in holes of order 2k-2 of $t_{k-1}+A$, \cdots , contained in a hole of order k of t_1+A ; the union H of these holes of order 2k-1 (each of length $2^{-m(2k-1)-2k}$) is therefore in $I \setminus B$. Now

$$\mu(H) \ge 2^{-m(2k-1)-2k} \prod_{j=1}^{k-1} 2^{m(k+j)-m(k+j-1)-k-j-1} = 2^{-m(k)-(8k^2+3k-2)/2}$$

$$\ge 2^{-m(k)-8k^2+1}.$$

Since I was an arbitrary interval of length $2^{-m(k)+1}$, we have

$$\omega(2^{-m(k)+1}; B) \ge \mu(H)/\mu(I) \ge 2^{-8k^2},$$

and this is in contradiction to (4).

REFERENCE

1. J. J. Schäffer, Function spaces with translations, Math. Ann. vol. 137 (1959) pp. 209-262.

University of Uruguay and University of Chicago