TRIGONOMETRIC SERIES WITH QUASI-MONOTONE
COEFFICIENTS

S. M. SHAH

1. Introduction. In this note we extend the following Theorem A
of Chaundy and Jolliffe [3] and Theorems B and C of Boas [2].

THEOREM A. Suppose that b, | 0. A necessary and sufficient condition
that the series

(1.1 S(x) = ‘Z b, sin nx

should be uniformly convergent is that nb,=0(1).
THEOREM B. If b, | 0 and 0=y =1, then

(1.2) 27S(x) € L(0, 7)

if and only if the series

00

(1.3) > nrip,

1
converges.

THEOREM C. If b, | 0 and 0<y <1 and
(1.4) C(x) = Z b, cos nx,
1

then x~7C(x) €L(0, m) if and only if (1.3) converges.

G. Sunouchi proved Theorems B and C by a different method [7]
and Aljanéi¢, Bojanié and Tomié [1], and S. O’Shea [6] have ex-
tended these theorems in different directions.

2. Statement of results. A sequence (4,) of nonnegative numbers
is said to be quasi-monotone if

(2.1) bnyr = b.(1 + a/n)

for some constant «>0 and all n>#n¢(a) [5; 8]. An equivalent defini-
tion is that b,/nf | 0 for some 8>0. We may suppose that a is an
integer. Let P(n) denote the number of terms b such that E<n,
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bi—1<bx; and let ¢(x) be any function, positive and nondecreasing for
x=1, and such that

) &(x%) = cd(x)

for x>1 and some positive constant ¢ and
(ii) 2 1/ng(n) < o,
1

THEOREM 1. Let (b,) be quasi-monotone.
(a) If either

2.2) ba=o(l), P(n) = O(n/é(n),
or
2.3) 3w,

is convergent, then
(2.4) > | b = by
1

15 convergent.
(b) If nb,=0(1), then
o 4 1
2 | b= by = @at 1) max (kby).
» ? tzp

(c) If either
(2.5) P(n) = O(n/¢(n) log n)

and (2.3) is convergent, or
(2.6) > (log n/m)b,
1
is convergent, then
(2.7 Z':‘,lb,.—b,.+l| log n

s convergent.
(d) If 0<y =1 and (1.3) is convergent, then

(2.8) > | b = boga| 7
1
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is convergent.

THEOREM 2. Let (b.) be quasi-monotone, If either (2.2) holds or (1.3)
is convergent for y=0, then (1.1) and (1.4) are convergent for every x,
save possibly x=0 in the case of (1.4).

THEOREM 3. Let (b,) be quasi-monotone. A necessary and sufficient
condition that the series (1.1) should be uniformly convergent throughout
any interval is that nb,=o0(1).

THEOREM 4. Let (b,) be quasi-monotone.

(i) If 0<vy <1, and (1.3) is convergent, then x~7C(x) EL(0, 7).
(i) If 0<y=1, and (1.3) is convergent, then x~7S(x) EL(0, ).
(iii) If (1.3) is convergent for ¥y =0, and (2.5) holds, then

C(x) and S(x) € L(0, ).

REMARKS. 1. Let 5,20 (not necessarily monotone). Then [2, pp.
219-220] x~7S(x) EL(0, 7), 0 <y <1 implies the convergence of* (1.3)
and x~7C(x) EL(0, 1), 0 <y <1 implies the convergence of (1.3).

II. If S(x)&L(0, 7) is odd and (1.1) its Fourier series, then
> b./n< o [4, p. 30;9, p. 59]. Hence, if (b,) be quasi-monotone,
then (2.4) is convergent, and (1.1) is convergent everywhere and
uniformly convergent over the interval 0 <d=<x <27 —4.

These remarks along with Theorem 4 give extensions of Theorems
B and C for series with quasi-monotone coefficients. We show by an
example that the condition (2.2) on P(#) is best possible in the sense
that if D.1/n¢(n) = =, then (2.4) may not converge.

3. Proof of Theorem 1. (a) Write b,=5(n) and let
q
Sty ) = 22 | b(m) —b(n 4 1)].
p

If P(k)=0(1), then the convergence of (2.4) follows easily and so we
assume lim; ., P(k) = «. Let #;=max(n,, 2) be the least integer such
that b(n14-1)>b(m); pr=1 the largest integer such that b(n,+¢)
>b(m+t—1) for t=1, 2, - - -, p1; ny>n1+p1 the least integer such
that d(me+1)>b(ny) and so on. Then 7, T . Let m:<p <miys,
ne S ¢ <myr Then S(m;, njpa—1) = D10+ 1) — b(n))
+ D 2 (b(n) —b(n+1)) where the summation in 2, is given by
nijSn=nj+p;—1andin 2, by n;4+p;<n=<n;—1. Hence

(3.1) S(p,q) S 2 zk‘: {o(n; + p;) — b(n)} + b(m).

! Compare [6, p. 281].
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Denote by 4, A4y, - - - positive constants which may depend on «
and ¢. Then from (2.2)

1t e S P+ ) < A(mi + p1)/ (e + p1).

Hence for all large k, ppSm: and so for k=1, 2, - - -, P(m+ps)
=P, <Amp/P(ni). Write nj=n, p;=p. Then from (2.1)

b(n + P)/b(") = H(?; n, a)

where
O(p,ma)=(1+a/n)---(1+a/(nt+p—1)
<A+ p/m* =1+ a-27Y(p/n).
Hence from (3.1), we have

6n S0 <(maxs)(1+ Az.:,, pim)-

Now

¢ ¢ 1 1 1
3.3) %p,/n, < Al[ ; 1 = ni/n;0) + + ]

é(n;) o(m)  d(n441)

Since

nj+1—1 1

Z 1/ng(n) > (1 = ni/nip),

(”j+l)
; ¢(”:+1) = nj/njy1) < ©;

and hence
(3.4 zl: p (n’) — ni/ny1)

is convergent, provided #j.1 <7} for all large j. If #;,1>7] for an in-
finity of j, then we define n} as follows:

3.5) nr = m, n: = min(#n;, n:jl), i>1
It is easily seen that n},<n*=<n}? for j22 and
As
$(n,) ' $(n)

By the above argument

*/n).
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2 {1/6(H}(1 — n}/nka) < o,

and hence (3.4) is convergent. From (3.2), (3.3) and the convergence
of (3.4), the convergence of (2.4) follows. If (2.3) is convergent, then
since {b(n) /n} is quasi-monotone [5], b(n) =o0(1). Further, from (2.1),

b b —1
(3.6) b(n+ p) — b(n) éa{%l+ ' +_—‘(,:‘::_ 1)}'

Hence from (3.1), the convergence of (2.4) follows.
(b) If ny =p <mi+px, then
S(p, meyr — 1) = 2b(me + pi) — b(p) — b(me11),
and if ne+pe Sp<mpy1—1, then
S(p, mer1 — 1) = b(p) — b(ma+1).
Let u(n) =maxiza (kbi). Then

t

S(Meyry nep1 — 1) = Z {Zb(”:‘ + i) — b(n;) — b("j-u)}

J=k+1

0

<2, {b(n)/n} + b(nr41).

Rk+1 .

Since
3 b(n)/n < utm)/m,  S(p, ©) < (e + Du(p)/2.

(c) Let

q

S, @ = > | by — bn+l| log n

P
where as in part (a), 7 < p <try1, 7. Sq<n4p1. Then

ne+1

S, 9) < 2 b(m)/(n — 1)
(3.7) ?

+ 2 {b(ni+p;) log (nj+p)—b(n;) log n;

Jj=1
+o(n;+ ;) log (nj+p;—1) —b(njy1) log (njy1—1) } -
Now since »_b(n)/n is convergent, b(n) =0(1) [5] and so

(3.8) S(p, q) < 0(1) + A4[E p;log ni/n; + As]-

1
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From (2.5) we have

2 (p;log nj)/n;

jm1

<d [i 1 (1 log n,-+1/log n,-)+ n, log e :I
‘L= é(n;) nit1 n; ¢(n)ner log nd

If n;,1 <77 for all large j, then the series

ad 1 log #; log n;
(3.10) Z {1_ g”:+l/ g":}

1 ¢(n) njs1 n;

is convergent. If 7;,1> 7} for an infinity of j, we define #}*, as in (3.5),
and then prove the convergence of (3.10). From (3.8), (3.9) and the
convergence of (3.10), the convergence of (2.7) follows.

To prove the second part of (c), we observe that for §=0, 1

b(n; + p;) log (n; + p; — 8) — b(n;) log (n; — 6)
< A7[ ""E"‘ b(n; + t) log (n; + l)]
t=0 n; 4+t
Hence from (3.7) and the convergence of (2.6), the convergence of
(2.7) follows.

(d) We omit the proof of the convergence of (2.8) which is similar
to the one used to prove the second part of (c).

(3.9)

4. Proof of Theorem 2. This follows from the convergence of (2.4).
We note that both series (1.1) and (1.4) are uniformly convergent
over the interval 0<d=x=27w—4.

Proor oF THEOREM 3. We need consider the interval 0Sx <. To
prove that the condition is necessary, consider

S(p 0, %) = 3 b(n) sin s,
P
and let p=[(1/2)g+1], x=7/2q. Then b(r) Zb(q)/II where p<r<q

and

a a

n=(1+——)--.(1+——)<,48, g >3.
g— 9 g—1

Hence
S(p, ¢, %) 2 b(g)A5'{sin px + - - - + sin g}

> 43%(g) (—Z— - 1) sin (%)
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Since the series is uniformly convergent, gb(¢) =0(1). We now show
that the condition is sufficient. Let nb(n) <e for n=N(e) and let
max(N, m)<p<q. If x=<w/q, then |S| Spxb(p)+ - - - +gxb(g)
<xge=mwe. If x=w/p, then from Theorem 1(b)

|S| < cosec (x/Z){ i | b(n) — b(n + 1)| + b(p) + b(g + 1)}

u(p)(da+1)  2u(p)
= e

If 7/p <x <m/q then, with k= [r/x], we have

|S| = |S@,B| + |SE+1,9]|

4o
< whe + 1{( + Du(k+1)
x E+1

} < (4o + 3)e.

} S efr + 4a + 3}

and the theorem is proved.
ProoF oF THEOREM 4. Boas [2] proved that if b,=0(1) and

(4.1) > b —1) —b(n+1)|w

is convergent, then x™"S(x) EL(0, ) where 0<y =1, and x~7C(x)
€ L(0, v) where 0 <y <1. By Theorem 1(d), the series (2.8) and hence
(4.1) are convergent. Further from the convergence of (1.3) we have
b.=0(1) [5]. Hence (i) and (ii) are proved. To prove (iii) we note that

* 1 —cosnx | sin na|
——dx < Aglogmn, f ——dx < dglogn.
0 x 0 x

Hence by the argument of Boas [2], C(x) and S(x) EL(0, =) if
4.2 S lo(n—1) —b(n+1)| logn

is convergent. From Theorem 1(c), (2.7) and hence (4.2) are con-
vergent and (iii) is proved.

5. Example. Let ¢(x) be positive and nondecreasing for x=1,
&(x?) Scp(x) for x>1 and Y 1/np(n) = . Then there exists a quasi-
monotone sequence (b,) for which
(5.1)  ba = 0(1), P(n) = O(n/$(n)) and 2 | b — bap1| = .

1
Let p'=1+1’ g:i= [1’¢(1)1+1» i= l, 29 Tty
m=2, npa=n+p+q i=1,2---,

Stn) = 3 1/ké(R),
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b, =b(n) = 1/S(m1) forn =1,

b(m) = 1/S(m) fork=1,2,---,

b(m 4+ t) = b(m)(me + )/ fort=1,2,---pp;k=1,2,---,
bm+pr+18) = b(megr)fort =1, - - - ymep—m—pp—1;k=1,2, - -

Then (b,) is quasi-monotone and conditions (5.1) are satisfied.

Added in proof. (i) In Theorem 1 (a), (c), it is not necessary to
suppose that ¢(x?) <cé(x). In fact it can be proved that #f \,>0, T
for n=1, 2, - -+, ¢(x)>0, T for x=\, f{:dx/{x¢(x)} < o, then
2 /e J O M) < .

(ii) The following theorem can be proved by the argument of
P. Sziisz (Acta Math. Acad. Sci. Hungar. 12 (1961), 215-220). Let
K be any arbitrary large positive number and suppose there exists a
sequence (mi), k=1, 2, - - - of natural numbers with the following prop-
erties: (a) mp/m>K; B=1,2,---, (b) X5 ak|sin rnkxl < for
some x50, %1, - - -, where (a,) is quasi-monotone. Then Yy ap< ©.
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