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1. Introduction. Tricomi's statement [l, p. 143] notwithstanding,

very little is known about integral equations of the first kind. So

little is known, in fact, that to say anything at all about solutions

requires that the kernels be very special.

The type of kernel that leads to the most elegant results is the

difference kernel [2; 3; 4]. If the range of validity of an integral

equation with a difference kernel is either the whole real line or a semi-

infinite interval, definitive results are known [2; 3; 5; 6]. On the

other hand, when the range is only a finite interval, so that the prob-

lem becomes the solution of

(1.1) <Hx)=fki\x-y\)fiy)dy, -1< x < 1,

general theorems on the existence of solutions have only recently been

derived [4].

In order to study the pathology of (1.1), it is helpful to have on

hand a stock of examples that can be solved explicitly. It is the pur-

pose of this note to derive an inversion formula for (1.1) for a certain

class of kernels. The application of this formula to show that some of

the results of [4] are best possible will be reserved for a later paper.

Let kEL, and let1 J denote the reciprocal of the Fourier transform

of ¿(|x|). To invert (1.1), it will be assumed that

(i) J(w) is an entire function of exponential type t<2;

(ii) 7(w) has no real zeroes ;

(iii)

/:

(iv)  The quantities

log | 7(w) |
-■ aw < oo ;

1 + w2

log I 7(w) |
lim sup

»-» oo ;u> real log W

log | 7(w)
p =   lim inf

tu-> » ;u> real log W
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1 The range of the argument of k in (1.1) is the interval (—2, 2). It is tacitly as-

sumed here that k has some extension over the rest of the line such that / exists and

satisfies (i)-(iv).
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are both finite.

In view of (ii) and the fact that k(\x\ ) is even, no loss of generality

will be involved if we assume

(1.2) J(w) > 0

on the real axis. We mention here explicitly that (1.2) will be assumed

in all that follows.

2. Notation. Functions of the independent variable x (or y) will be

denoted by lower case letters. Given a function of x, denoted by some

lower case letter, the same letter in upper case will be used to denote

its Fourier transform.

Given a function f(x), by/a(x) we shall mean the function

,fc, .        (f(x),    a < x <b,
fa(x) = \

10,        otherwise.

The Fourier transform of /„ will be denoted by Fl. Notice that F"a is

not zero outside (a, b) ; only its inverse transform has this property.

The utility of the notation introduced in the last paragraph results

from the validity of the obvious

Lemma 2.1. Consider two transforms F\, G*. If the product

H = FtGÎ

is a transform, then

H  —   Ha+c-

The result for the lower index, say, results from the fact that a

transform H=Hß if and only if it analytic and 0(eißw) in an upper

half of the complex w-plane [2].

We shall frequently have occasion to utilize functions of w that

are not transforms. (The function J oí §1 is an example.) If such a

function has the appropriate analyticity properties and increases no

faster than a power of w as Re w approaches infinity, the notation of

the second paragraph of this section will still be applied to it. Thus,

with this convention, (i) and (iv) give

J = jU

The point is that if some G* approaches zero fast enough at infinity,

the product JLiG\ will be a transform, even though JLt is not, and,

because of the analyticity properties of the product, Lemma 2.1 is

applicable to it, so that
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J-tGa  =   iJ-tGa)a—t.

3. Factorization of /. It is (essentially) shown in [7] that if J

satisfies (i), (ii), and (iii), then there exist two entire functions, L'Q

and Ll(, satisfying the conditions

(3.1) L-tLo = jU

(3.2) iltiw) = [Loiw)]-

(the bar denoting the complex conjugate), and

(3.3) Loiw) has no zeroes for Im w ^ 0.

It follows from (3.1), (3.2) and (1.2) that

(3.4) \L'o\   =  | 7^|   =[jltr

whenever w is real. In view of (iv), then, we have that whenever e>0,

(3.5) \Ll\  =  | ¿,|   =0(w»+<>/2),

and

(3-6)        t¿t t^t=0("~""'*)'

as | w\ —>oo along the real axis.

According to (3.3), 1/7Ó is analytic and of exponential type zero in

the upper half-plane Imtn^O, Thus, by (3.6), the Phragmen-Lindelöf

theorem can be applied to the function

(1 - iw)<*-<>'2

L'oiw)

to show that for every e > 0

1 i     i
(3.7)    -¡- = 0(w_l"_t)/2) as I w    —» oo in the upper half-plane.

I L'oiw) |

By (3.2), a similar result holds fof 7,1, in the lower half-plane.

4. Inversion of (1.1). We can now state our main theorem:

Let Jiw) satisfy (i)-(iv). Then, (1.1) has a unique solution whenever

<Kx)£C2[-l, l] and X<2. This solution is in Lp for all p<2/\.

Furthermore, its Fourier transform is given by the formula

(4.1)        fIi - jIaU - lIílWS = lIílW-u-1
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Finally, the condition \<2 is best possible.

By the last sentence we mean that if X ̂  2 a solution may not exist.2

To prove it, it is only necessary to consider the example J=l+w2,

0=1, -lgx = l.
To prove the main part of the theorem, let ^ be any continuous

function of w satisfying the following conditions:

\w2)
(4.2) ^(w) =01 — ) as \w\ —> °o along the real axis,

(4.3) v\i = íIl

That such a function exists is easy to see, for let \p(x) be any twice

continuously differentiable function with compact support such that

(4.4) i(x) = <p(x), -1 g x g 1.

Then, if [ — a, a] is any interval containing the support of yV,

(4.5) *(w) =  f yp(x)exdx.

(4.3) follows from (4.4). Also, (4.2) follows from two by parts integra-

tions of (4.5) and the Riemann-Lebesgue lemma.

On the real axis, the functions L01Jr and ULj$! axe continuous and

0(M,-2 4-(x+t)/2)> by (3 5) and (4 2). Since X< 2, then, these functions are

transforms [2], and the expressions (Lfe)? and (L'L^Zl, have

unique meanings.

Consider the function

(4.6) F = /-& - L-,(L¿9)7 - l'o(L-^)ZI

We shall show that F is a transform. First of all, F is entire, for, by

(4.5),^=*a_0, so that

ta Q    .     t    a  . t+a t,    0        a . — 1

F  = J-&-» -  L-t(LoV-a)l       -  La(L-i9^)-,-a,

by Lemma 2.1. Thus, Fis a sum of products of entire functions and is

itself entire. According to the L" version of the Paley-Wiener theorem

[7], then, to prove that F is a transform it will be sufficient to prove

that for every e>0,

(4.7) F (v>) = 0(w-1+x/2+«)

on the real axis.

2 However, if distributions (in the sense of L. Schwartz) are allowed as solutions,

one will always exist. See [4].
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The first term on the right of (4.6) satisfies (4.7) trivially because

of (4.2), (iv), and the assumption thatX<2. Because of (3.5), then,

(4.7) will follow if it can be shown that iLfe)? and (TA^)!1«, are

0(wt"1+<). Because of (3.2), however, it will be enough to prove the

result for the function (Ló^)". Thus, we shall show that

(4.8) (7o*)i = 0(w      ) as | w | —»00 along the real axis.

Lfä itself is 0(w>-2+(X+4)/2), as we have already seen. Since X<2,

then, Li,1!' is surely 0(w_1+') for every e>0. Since Lfó is continuous,

therefore, we may write

(4.9) \L¿9\   ú
1+ \w\

on the real axis, where c is a constant.

Now, (Z¿¥)," = (Z¿¥)i+*, so that

1       C °° gi(t+a)(w— i) _ gi(w— 1)

iLo*)7 = —       LoizMz)-dz,
2mJ-a w — z

and, by (4.9),

"[1 - cos(/+ a- i)wz]ll2l dz
(Io*)i

c   rxni - cos(/ + a - i)H1/2"|

i^j-jr      ui      ~Jr+ \wiz+l)\1-'

If the term in brackets is replaced by 21/2/|z| when |z| >1 and by

21'2 when |z| <1, a simple calculation can be used to derive (4.8).

Then, (4.7) and the fact that (4.6) is a transform follow.

We note also that (4.7) implies FELq whenever 3> 2/(2— X). Con-

sequently,/, the inverse transform of F, is in Lp whenever p<2/\,

by the Paley-Wiener theorem.

Also, F—FLi, for, writing

(/>)? = LU - (7>)lo

in (4.6), we see that

F = 7°_((7Ó*)ÍM - Z,J(zl,¥)_!.

Since t<2, Lemma 2.1 gives the result that F{° = 0. Similarly, writing

iL-t*)Zl = L-t* - (¿1,*)-!,

we find that FZ\, = 0 and F=FLi.

Consider
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F-i 1,1,«        1    .  o      -i

(4.10) IT, — -7i<™> -ir^-.*)-

(Z-o1!7)" is entire, as we have seen. By (4.8) and the Phragmén-

Lindelöf theorem, it is easy to see that

,       t       . 00 „   .      — 1 + É    tUJ.

(Lo*)i = 0(w      e   )

as | w\ —>«> in the upper half-plane. Also, 1/L'0 is analytic in the upper

half-plane, by (3.3), and satisfies (3.7). Thus, the second term on the

right of (4.10) is analytic and 0(w~1^lil2+'eiw) in the upper half-plane.

Let S be positive and consider

r 1      i    »I1-8        1    fM e«1-» <<»-<>   1       ,    .
— (¿o*)i =—-— (Zo*)i¿í

„Lo _!_„       2-kxJ _M     w — z     L\

whenever Im w<0. The last integral is zero, a fact that can be seen

by closing the contour in the upper half of the complex 2-plane and

using the order relation just derived.

In a similar way, it can be shown that

[¿,(L°-*,:L1
= 0.

1+«

Therefore, (4.10) gives
i

1-5m i-«

by (4.3). Since k, the inverse transform of Í/J, is in L and FLiEL",

it follows [2] that/(x) satisfies (1.1) whenever |x| <1 —5. Since S was

arbitrary, however, we see that/ is really a solution of (1.1).

We shall now show that (4.1) and (4.6) define the same function

F. To do so, we note that Sf'i0 is 0(l/w) on the real axis, since we have

**=/;
eiwx\f/(x)dx

\p(l)-— I    eiwxt'(x)dx.
iw        iw J 1

Thus, I$lî and ULff/* are entire and belong to L" on the real axis.

They are, therefore, transforms, so that we may write

.    «    00. « t    CO

(Lo^i)i = Lo*i,
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and

iL-tâ)-1» = 0,

by Lemma 2.1, since t<2. In the same way, we find that

afodbr = o,
iL-t<SfZl)Zl = lL&ZI.

Thus, (4.6) and (4.3) give (4.1).

It remains only to show that the solution we have found is unique.

Let fEL be any solution of (1.1) with <p(x) = 0, |x| <1. If <p(x) is

defined by the right side of (1.1) for |x| jgl, we find that

fIi = jU*zI + *D,
so that

jU^L + *d = [/U*zl + *r)]ii
= 0,

again by Lemma 2.1. It follows that 7"Li = 0.

5. Some examples. Before closing, it will probably be well to dem-

onstrate that our theorem is not completely vacuous. We shall do

this here by displaying some examples.

The simplest functions that satisfy the hypotheses (i)-(iv) are, of

course, the even polynomials without real zeroes. For these functions,

however, X is at least two, so that the main theorem does not apply.

(On the other hand, as noted in footnote 1, distributional solutions

of (1.1) exist even when X^2. Furthermore, the formula (4.1), when

interpreted carefully, continues to give the solution in these cases.)

A function that satisfies (i)-(iv) with X<2 is

(5.1)    Jiw) = [ii - w)1'2 sin (t - w)1/2][(i + wY'2 sin (* + w)112],

where by z1'2 sin z1'2 we mean the entire function defined by the series

^ (2»+l)l'

(5.1) obviously satisfies (i) and (ii). Also, \=p = l, so that (iv)—and,

as a consequence, (iii)—is satisfied.

It is not really necessary for the validity of our theorem, but we

have assumed that the kernel k is in L. (We only need that k have a

Fourier transform in some sense and that the convolution theorem
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hold.) For completeness, therefore, it will now be shown that the

kernel corresponding to (5.1) belongs to L. To show this, we note

that Í/J is analytic for | Im w\ <1. Thus, by a slight generalization

of an argument to be found in [2], k = 0(e~M) as |*|—*». Also,

1/JEL2. Thus [2], kEL2, so that kEL in any finite interval. The

result now follows.

A final example of a function satisfying our hypotheses is

/' ' cos wx

0     x1'2

For this function, (i) is immediate, (ii), (iii), and (iv) (with \=ß = 3/2)

follow from known properties [8] of the Fresnel integral, to which

(5.2) is closely related.

If / is given by (5.2), it is rather hard to see whether or not the

corresponding kernel is in L. On the other hand, 1/JELP (all p=l)

since a = 3/2. Furthermore, the function FLi of (4.1) is in Lq when-

ever q>2/(2— A) =4, by the same proof as before. It follows from

these two facts [2] that the convolution theorem applies to the prod-

uct (l/J)FLi, so that the inverse transform of FLi satisfies (1.1).
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