LINEARLY QUASI-ORDERED COMPACT SEMIGROUPS

N. J. ROTHMAN

By semigroup, we mean a Hausdorff topological space together with a continuous associative multiplication. We are concerned here with the existence of local subsemigroups, which are arcs, in compact connected semigroups whose principal left ideals are linearly ordered by \subset . In addition, we seek local cross sections at certain idempotent elements in such semigroups.

In [5], Koch has shown that if S is a compact connected semigroup with identity, then S contains an arc. In [7], Mostert and Shields obtained local one parameter semigroups at the identity. Hunter, in [2], and Hunter and Rothman, in [3], have obtained arcs which are local subsemigroups and certain local cross sections in compact connected abelian topological semigroups. Our approach is similar to that in [2] and [3], and concerns noncommutative semigroups.

We follow the notation and terminology of [1;2;3;11]. In particular, a nonempty subset L(R, I) of a semigroup S is a left (right, two sided) ideal of S if $SL \subset L(RS \subset R, SI \cup IS \subset I)$. The left ideal L is principal if for some $x \in L$, $L = \{x\} \cup Sx$. We denote by L_p the set of those x in S for which $\{x\} \cup Sx = \{p\} \cup Sp$. The symbol K is reserved for the minimal ideal of a semigroup (when S is compact, K exists), and E is used to denote the set of idempotent elements of S (when S is compact, E is nonvoid). If $E \in E$, the maximal subgroup of E containing E is designated by E.

It is known that the sets L_p form an upper semi-continuous decomposition of S, when S is compact. We let S' be the associated hyperspace of this decomposition and ϕ be the natural mapping. That is $\phi: S \rightarrow S'$ is given by $\phi(x) = \{L_x\}$. We are interested in the cases when S' is again a semigroup and ϕ is a homomorphism. In particular, Theorem 1 gives necessary and sufficient conditions that S' be a standard thread [1].

DEFINITION. A semigroup S is said to be left linearly quasi-ordered if for each x and y in S, either $\{x\} \cup Sx \subset \{y\} \cup Sy$ or $\{y\} \cup Sy \subset \{x\} \cup Sx$.

It is easy to see that the order induced on S, $x \le y$ if and only if $\{x\} \cup Sx \subset \{y\} \cup Sy$, is a continuous quasi-order in the sense of Nachbin [8] and Ward [10]. It follows that each compact subset of S has a maximal element.

We assume for the remainder of this note, that S is a compact

Received by the editors May 12, 1961.

connected semigroup. Since we will concern ourselves only with left linearly quasi-ordered semigroups, we omit the term left. We note that the right linearly quasi-ordered semigroups are dual to the left ones when xy = yx.

LEMMA 1. Let S be a linearly quasi-ordered semigroup. Then (i) $S^2 = S$, (ii) for each closed left ideal L of S and $y \in S - L$, $L \subset Sy$, (iii) S = ES = SE = ESE, and (iv) for each $x \in S$, $xS \subset Sx$.

- PROOF. (i) Let $y \in S S^2$, then $y \in S Sx$ for all $x \in S$. If $x \neq y$, then $\{x\} \cup Sx \subset Sy$ by the linear quasi-order, and hence, $x \in Sy$. It follows that $S^2 = S \{y\}$ is open and closed in S, but S is connected and S^2 is nonvoid. This is a contradiction, hence, $S^2 = S$.
- (ii) Let L be a closed left ideal of S and $y \in S L$. For each $x \in L$, $\{x\} \cup Sx \subset L$; hence $\{x\} \cup Sx \subset \{y\} \cup Sy$ by the linear quasi-order and $x \in Sy$, that is $L \subset Sy$.

In order to obtain (iii) and (iv), we show that $eS \subset Se$ for each $e \in E$.

Let $e \in E$ with $eS \subset Se$. For $y \in eS - Se$, $Se \subset Sy$ by (ii). Now e and y belong to SeS, hence by a result of Koch [4, Corollary 2 to Theorem 3], Se is maximal among $[Sx: x \in SeS]$, hence, $Sy \subset Se$. From this contradiction, it follows that $eS \subset Se$.

(iii) We show first that S = SE. If $y \in S - SE$, then for each $e \in E$, $e \in Sy$ and hence, $SeS \subset SyS$. Now S = SES by [6, Corollary 1] and $S = SES \subset SyS$. Hence y = ayb for some a and b in S. Thus, there is an $f \in E$ such that yf = y [9] and S = SE.

In order to see that S = ES, we note that for each $f \in E$, $Sf = \bigcup [eS: e \in L_f \cap E]$; since, $S(\bigcup [eS: e \in L_f \cap E]) \subset SfS \subset Sf$ and $S(\bigcup [eS: e \in L_f \cap E])$ is a left ideal containing f. Now, $S = SE = \bigcup [Sf: f \in E] = \bigcup (\bigcup [eS: e \in L_f \cap E]: f \in E) = ES$. The equations ESE = E(SE) = ES = S establish the last equality.

(iv) Let $x \in S$ and $y \in xS - Sx$. Then $Sx \subset Sy$ and both x and y belong to SxS by (iii). Again, we apply the result of Koch as above and find that $Sy \subset Sx$. Hence, $xS \subset Sx$.

We observe that for each $x \in S$, $\{x\} \cup Sx = Sx$ and that Sx is a two sided ideal in S. In fact, we have

COROLLARY 1. Each closed left ideal in S is a principal left ideal and a two sided ideal.

PROOF. Let L be a closed left ideal of S. Since the quasi-order, $x \le y$, is continuous, L has a maximal element x. Now $Sx \subset L$ and for each $y \in L$, $Sy \subset Sx$; hence Sx = L. Since $xS \subset Sx$, $SxS \subset Sx$ and Sx is a two sided ideal.

COROLLARY 2. The minimal ideal K is a minimal left ideal.

THEOREM 1. Let S' be the hyperspace of the upper semi-continuous decomposition of S by the sets L_p . Then S' is a semigroup with the multiplication $\{L_x\}\{L_y\}=\{L_{xy}\}$, and a standard thread if and only if S is linearly quasi-ordered.

PROOF. Let S' be a standard thread and let x and y belong to S with $\phi(x) \leq \phi(y)$. Then, either $L_x = L_y$ or there is an element b in S with $\phi(x) = \phi(b)\phi(y)$ and $L_x = L_{by}$. Thus Sx = Sy or $Sx = Sby \subset Sy$ and S is linearly quasi-ordered.

On the other hand, let S be linearly quasi-ordered. Since each closed principal left ideal is an ideal, the upper semi-continuous decomposition of S by the sets L_p is the same as the upper semi-continuous decomposition of S by the sets $J_p(x \in J_p)$ if and only if $\{x\} \cup Sx \cup xS \cup SxS = \{p\} \cup Sp \cup pS \cup SpS\}$. In order to show that S' is a semi-group, it suffices that (Sx)(Sy) = Sxy. Now SxS = Sx, hence, SxSy = Sxy by associativity. Since ϕ is a continuous homomorphism, S' is a compact connected semigroup with zero $(=\phi(K))$ and identity $(=\phi(e)$, where S = Se). The order on S' induced by that on S is total and open intervals are open sets. Hence, S' has the order topology and thus is a standard thread.

For the remainder of this paper, we will assume that S' is a standard thread. The following lemma is in part a generalization of a result of Hunter [2, Lemma 2], and utilizes his proof.

LEMMA 2. Let T be a subsemigroup of S'. Suppose that T contains only two idempotent elements and is a standard thread from $\phi(e)$ to $\phi(f)$, where e and f belong to E. Then $\phi^{-1}(T)$ contains a compact connected subsemigroup N such that N modulo $(N \cap L_e)$ is a standard thread from $\{N \cap L_e\}$ to f homeomorphic and isomorphic to T, and $fS - Se = H_f(N - L_e)$.

PROOF. We restrict our attention to the subsemigroup fS in S. It is easily seen that fS is a compact connected linearly quasi-ordered semigroup with identity f. Let $R = (\phi^{-1}(T) \cap fS)$ modulo $(L_e \cap fS)$. We first show that R is connected. If $R = A \cup B$, where A and B are mutually exclusive compact sets, with $\{L_e \cap fS\} \in B$, then, since A is compact, there is an $x \in A$ such that $\phi(x)$ is the first point of $\phi(A)$ in T in the order from $\phi(e)$ to $\phi(f)$. (We are identifying $(\phi^{-1}(T) \cap fS) - (L_e \cap fS)$ and $R - \{L_e \cap fS\}$.) Let V be an open set such that $A \subset V$ and $V \cap B = \square$. For any open set U containing f, there is a $t \in R$ such that $L_t \cap U \neq \square$, $L_t \neq L_f$. For, let $b \in L_f \cap fS = H_f$, let b^{-1} be the inverse of b in H_f , and let there be sets L_p arbitrarily close to b.

The sets L_{pb}^{-1} are then arbitrarily close to f. By continuity of multiplication, there is an open set W containing f such that $xW \subset V$. Since xf = x, $x \in xW$ and there is an L_t such that $t \in L_t \cap W$ and $\phi(t) < \phi(f)$. Since $xL_t \subset L_{xt}$, $L_{xt} \cap V \neq \Box$ and $xt \in A$. Since T has only two idempotent elements, $\phi(xt) \neq \phi(x)$. Since $\phi(xt) \leq \phi(x)$, $\phi(xt) < \phi(x)$ and $\phi(x)$ is not the minimal element of $\phi(A)$. This contradiction shows that R is connected, it is clearly compact and hence a continuum. The semigroup R has a zero $\{L_e \cap fS\}$ and an identity f and no other idempotent elements. It follows from [7] that there is a standard thread P from the zero of R to the identity of R. Letting δ be the natural mapping of $\phi^{-1}(T) \cap fS$ onto R and $J = \delta^{-1}(P - \{0\})$, we see that $N = \overline{J}$ is the desired semigroup.

Let $x \in fS - Se$ and $n \in N \cap L_x$, then $x \in fSn$ and hence x = ftn. But $\phi(x) = \phi(n) = \phi(f)\phi(t)\phi(n)$ and thus $\phi(ft) = \phi(f)$. Hence $ft \in H_f$ and $x \in H_f(N - L_e)$. It follows that $fS - Se = H_f(N - L_e)$.

For use in the next lemma, we note that if e and f belong to E with $L_e = L_f$ then ef = e and fe = f.

LEMMA 3. If $f \in E$, then, for each $e \in L_f \cap E$, eS is topologically and algebraically isomorphic to fS under the mapping $ex \rightarrow fex$.

PROOF. Let $\theta: eS \rightarrow fS$ be defined by $\theta(x) = fx$. If $\theta(x) = \theta(y)$, then fx = fy and efx = efy but then x = ex = ey = y and θ is injective. It is clear that θ is surjective and by its definition continuous, hence θ is a homeomorphism. Now $\theta(xy) = fxy = fxey = fxefy = f(xe)fy = fxfy = \theta(x)\theta(y)$ and θ is a homomorphism.

THEOREM 2. Let T be a subsemigroup of S'. Suppose that T contains exactly two idempotent elements g' and f' and that T = [g', f'] is a standard thread. Then, for each $f \in \phi^{-1}(f') \cap E$, there is a compact connected subsemigroup $N(f) \subset fS$ such that N(f) modulo $(N(f) \cap \phi^{-1}(g'))$ is a standard thread isomorphic to T, and $Sf - Sg = L_f(N(f) - \phi^{-1}(g'))$, where $g \in \phi^{-1}(g')$.

PROOF. The first part of the theorem is a restatement of Lemma 2. We let f be a fixed idempotent element in $\phi^{-1}(f')$ and N(f) the compact connected semigroup of Lemma 2. For $e \in L_f \cap E$, we choose N(e) = eN(f) by Lemma 3.

Let $y \in Sf - Sg$, then $y \in eS$ for some $e \in L_f \cap E$. Hence y = pn, where $p \in H_e$ and $n \in N(e) - \phi^{-1}(g')$ by Lemma 2. Now pf = p, so that y = pfn and $y \in L_f(N(f) - \phi^{-1}(g'))$, since $fn \in fN(e) = fefN(f) = N(f)$ and the conclusion follows.

COROLLARY. Under the same hypotheses as in Theorem 2, for each $x \in \phi^{-1}(T) - \phi^{-1}(g')$, $L_x = L_f x$.

PROOF. We note that N(f) meets each L set in at most one point and the L sets are disjoint and fill up $\phi^{-1}(T) - \phi^{-1}(g')$. Since $\phi^{-1}(T) - \phi^{-1}(g') = L_f(N(f) - \phi^{-1}(g'))$, the conclusion follows.

For the remainder of this note, we continue to use the hypotheses and notation of Theorem 2. Let us consider the mapping $\delta\colon L_f\times N(f)\to Sf$ given by $\delta(p,n)=pn$. If we restrict δ to $(L_f\cap fS)\times N(f)$, then $\delta(p,n)\in fS$. Now, $L_f\cap fS=H_f$ is a compact topological group with identity f. If x and y belong to N(f) and $g\in H_f$; then gx=gy implies x=y, since N(f) meets each L set in at most one point. Let V be a neighborhood of f in fS such that, if $x\in V\cap N(f)$ and p and $q\in V\cap H_f$, with px=qx, then p=q. Then, for any a, b and c in V with ab=ac, b=c. We see that if such a V exists, then there is an open set W of H_f and an arc $[x,f] \subset N(f)$ such that $\delta \mid \overline{W} \times [x,f]$ is injective. Further, $\delta \mid W \times (x,f]$ is a homeomorphism. We have then

THEOREM 3. There is a local cross section at f in fS if there is a local cancellation semigroup containing f in its interior.

THEOREM 4. If H_f is a Lie group, then there is an arc (x, f] in N(f) such that $fS - (\phi^{-1}[0, x]) \approx H_f \times (x, f]$.

PROOF. Let H_f be a Lie group, then, there is an $x \in N(f)$ such that for all $y \in N(f) - xN(f)$ and $p \in H_f$, py = y implies p = f. Hence, $\delta \mid H_f \times (x, f]$ is injective. Using the continuity of the decomposition \mathcal{L} , and the compactness of H_f , it follows that $\delta \mid H_f \times (x, f]$ is a homeomorphism.

If each He, for $e \in L_f$, is a Lie group, it does not follow that there is an arc (x, f] such that $Sf - Sx \approx L_f \times (x, f]$, for consider

EXAMPLE 1. Let C denote the Cantor set with multiplication xy = x. Let I_1 be the usual unit interval and consider $C \times I_1$. If $\mathfrak D$ is the upper semicontinuous decomposition of $C \times I_1$ for which $C \times I_1/\mathfrak D$ is the Cantor fan then this is again a semigroup and there are no local cross sections at the idempotent elements of the form (x, 1). However since each $L_f \cap fS = \{f\}$ the arcs N(f) are usual unit intervals and the cross sections trivial.

However, we have the

COROLLARY. If, for each $e \in E$, L_e is a Lie group, then there is a cross section, $L_e \times (x, e]$, at each idempotent element e for which $\phi(e)$ is the right hand end point of a unit or nil thread in S'.

Proof. This follows directly from Theorems 2 and 4.

We did not consider the compact connected idempotent subsemigroups of S' due to

EXAMPLE 2. Let R_1 denote the reals modulo 1 and I_3 the idempotent semigroup on the unit interval with multiplication given by $x \cdot y = \min(x, y)$. Let $T = R_1 \times I_3 \times I_3$ and let S be the subsemigroup of T given by $S = (R_1 \times I_3 \times \{0\}) \cup (\{0\} \times \{0\} \times I_3)$. Then S is a linearly quasi-ordered semigroup and S' is isomorphic to I_3 . However, the geometric realization of S as a cylinder with a free arc attached shows that there are connected idempotent subsemigroups P in S' such that $\phi^{-1}(P) \neq L_I N(f)$. Here the N(f) exist by $[2, L_1]$, Lemma 1.

Further examples can be found in [2] and [3].

REFERENCES

- 1. A. H. Clifford, Connected ordered topological semigroups with idempotent endpoints. I, Trans. Amer. Math. Soc. 88 (1958), 80-98.
- 2. R. P. Hunter, Certain upper semi-continuous decompositions of a semigroup, Duke Math. J. 27 (1960), 283-289.
- 3. R. P. Hunter and N. J. Rothman, Characters and cross sections for certain semi-groups, Duke Math J. (to appear).
- 4. R. J. Koch, On monothetic semigroups, Proc. Amer. Math. Soc. 8 (1957), 397-401.
 - 5. ——, Arcs in partially ordered spaces, Pacific J. Math. 9 (1959), 723-728.
- 6. R. J. Koch and A. D. Wallace, Maximal ideals in compact semigroups, Duke Math. J. 21 (1954), 681-686.
- 7. P. S. Mostert and A. L. Shields, One parameter semigroups in a semigroup, Trans. Amer. Math. Soc. 96 (1960), 510-517.
 - 8. L. Nachbin, Topologia e Ordem, Univ. of Chicago Press, Chicago, 1950.
- 9. K. Numakura, On bicompact semigroups, Math. J. Okayama Univ. 1 (1952), 99-108.
- 10. L. E. Ward, Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. 5 (1954), 144-161.
- 11. A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95-112.

THE UNIVERSITY OF ROCHESTER