
LINEARLY QUASI-ORDERED COMPACT SEMIGROUPS

N. J. ROTHMAN

By semigroup, we mean a Hausdorff topological space together

with a continuous associative multiplication. We are concerned here

with the existence of local subsemigroups, which are arcs, in compact

connected semigroups whose principal left ideals are linearly ordered

by C. In addition, we seek local cross sections at certain idempotent

elements in such semigroups.

In [5], Koch has shown that if 5 is a compact connected semigroup

with identity, then 5 contains an arc. In [7], Mostert and Shields

obtained local one parameter semigroups at the identity. Hunter, in

[2], and Hunter and Rothman, in [3], have obtained arcs which are

local subsemigroups and certain local cross sections in compact con-

nected abelian topological semigroups. Our approach is similar to that

in [2] and [3], and concerns noncommutative semigroups.

We follow the notation and terminology of [l; 2; 3; 11 ]. In particu-

lar, a nonempty subset L(R, I) of a semigroup S is a left (right, two

sided) ideal of Sii SLEL(RSER, SIKJISEI). The left ideal L is
principal if for some xEL, L= {x} VJSx. We denote by Lp the set of

those x in 5 for which {x} VJSx = {p} *USp. The symbol K is reserved

for the minimal ideal of a semigroup (when 5 is compact, K exists),

and E is used to denote the set of idempotent elements of S (when

5 is compact, E is nonvoid). If eEE, the maximal subgroup of 5 con-

taining e is designated by He.

It is known that the sets Lp form an upper semi-continuous decom-

position of S, when 5 is compact. We let S' he the associated hyper-

space of this decomposition and <p be the natural mapping. That is

<p: S-^S' is given by <p(x) = {Lx}. We are interested in the cases when

S' is again a semigroup and <p is a homomorphism. In particular,

Theorem 1 gives necessary and sufficient conditions that S' be a

standard thread [l].

Definition. A semigroup 5 is said to be left linearly quasi-ordered

if for each x and y in S, either {x} WSx C {y} ̂ JSy or {y} VJSy C {x}

VJSx.
It is easy to see that the order induced on S, x^y if and only if

{x}VJSxE{y}^JSy, is a continuous quasi-order in the sense of

Nachbin [8] and Ward [lO]. It follows that each compact subset

of 5 has a maximal element.

We assume for the remainder of this note, that 5 is a compact
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connected semigroup. Since we will concern ourselves only with left

linearly quasi-ordered semigroups, we omit the term left. We note

that the right linearly quasi-ordered semigroups are dual to the

left ones when xy = yx.

Lemma 1. Let S be a linearly quasi-ordered semigroup. Then (i) S2

= S, (ii) for each closed left ideal L of S and yES — L, LESy, (iii) 5
= ES = SE =ESE, and (iv) for each xES, xSESx.

Proof, (i) Let yES-S2, then yES-Sx for all xES. If X9*y, then
jx} yJSxESy by the linear quasi-order, and hence, xESy. It follows

that S2 = S— {y} is open and closed in S, but 5 is connected and S2

is nonvoid. This is a contradiction, hence, 52 = 5.

(ii) Let L be a closed left ideal of S and yES — L. For each xEL,

{x}VJSxEL; hence {x} \JSxE {y}^JSy by the linear quasi-order

and xESy, that is LESy.

In order to obtain (iii) and (iv), we show that eSESe for each

eEE.
Let eEE with eSC^Se. For yEeS — Se, SeESy by (ii). Now e and y

belong to SeS, hence by a result of Koch [4, Corollary 2 to Theorem

3], Se is maximal among [Sx: xESeS], hence, SyESe. From this

contradiction, it follows that eSESe.

(iii) We show first that S = SE. If yES—SE, then for each eEE,
eESy and hence, SeSESyS. Now S = SES by [6, Corollary l] and

S=SESESyS. Hence y — ayb for some a and b in 5. Thus, there is

an fEE such that yf = y [o] and 5=5£.

In order to see that S = ES, we note that for each f E E, Sf

= {}[eS: eELfC\E); since, 5(U [eS: eEL,C\E}) ESfSESf and
5(U [eS: eEL¡C\E\) is a left ideal containing /. Now, S=SE

= {J[Sf:fEE] = U(U[eS:eELfr\E]:fEE)=ES. The equations
ESE = E(SE) =ES=S establish the last equality.

(iv) Let xES and yExS — Sx. Then SxESy and both x and y

belong to 5x5 by (iii). Again, we apply the result of Koch as above

and find that 5yC5x. Hence, x5C5x.

We observe that for each x£5, {x}U5x = 5x and that Sx is a

two sided ideal in 5. In fact, we have

Corollary 1. Each closed left ideal in S is a principal left ideal and

a two sided ideal.

Proof. Let L be a closed left ideal of 5. Since the quasi-order»

xiSy, is continuous, L has a maximal element x. Now SxEL and

for each yEL, SyESx; hence Sx = L. Since x5C5x, 5x5C5x and

Sx is a two sided ideal.



354 n. j. rothman [June

Corollary 2. The minimal ideal K is a minimal left ideal.

Theorem 1. Let S' be the hyper space of the upper semi-continuous

decomposition of S by the sets Lp. Then S' is a semigroup with the

multiplication {Lx} {Ly} = {Lxy}, and a standard thread if and only if

S is linearly quasi-ordered.

Proof. Let S' be a standard thread and let x and y belong to S

with <j>(x) ̂<p(y). Then, either LX = LV or there is an element b in 5

with <p(x) =(p(b)4>(y) and Lx = Lby. Thus Sx = Sy or Sx = SbyESy and

5 is linearly quasi-ordered.

On the other hand, let 5 be linearly quasi-ordered. Since each closed

principal left ideal is an ideal, the upper semi-continuous decomposi-

tion of 5 by the sets Lp is the same as the upper semi-continuous

decomposition of S by the sets Jp(xEJP if and only if {x} VJSx^JxS

VJSxS= {p}\JSp*UpS\JSpS). In order to show that S' is a semi-

group, it suffices that (Sx) (Sy) = Sxy. Now 5x5 = Sx, hence, Sx Sy

= Sxy by associativity. Since <p is a continuous homomorphism, 5' is

a compact connected semigroup with zero ( = <p(K)) and identity

( = <p(e), where S=Se). The order on 5' induced by that on 5 is total

and open intervals are open sets. Hence, 5' has the order topology

and thus is a standard thread.

For the remainder of this paper, we will assume that 5' is a stand-

ard thread. The following lemma is in part a generalization of a

result of Hunter [2, Lemma 2], and utilizes his proof.

Lemma 2. Let T be a subsemigroup of S'. Suppose that T contains

only two idempotent elements and is a standard thread from <f>(e) to

4>(f), where e and f belong to E. Then (^^(T) contains a compact con-

nected subsemigroup N such that N modulo (Nr\Le) is a standard thread

from {NC\Le} to f homeomorphic and isomorphic to T, and fS—Se

= Hf(N-Le).

Proof. We restrict our attention to the subsemigroup fS in 5. It is

easily seen that fS is a compact connected linearly quasi-ordered

semigroup with identity/. Let i?= ((¿"K 70^/5) modulo (LeC\fS).

We first show that R is connected. If R = AVJB, where A and B are

mutually exclusive compact sets, with {Leí^fS} EB, then, since A

is compact, there is an xEA such that <p(x) is the first point of <p(A)

in T in the order from <p(e) to 4>(f). (We are identifying (<jr1(T)C\fS)

-(Ler\fS) and R-{Ler\fS}.) Let F be an open set such that

AEV and V(~\B=\Z\. For any open set U containing/, there is a

1ER such that LtCWJ^U, Lt^L¡. For, let bELsC\fS = H{, let b~l be
the inverse of b in H¡, and let there be sets Lp arbitrarily close to b.
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The sets Lpirl are then arbitrarily close to /. By continuity of multi-

plication, there is an open set Wcontaining/ such that xWE V- Since

x/=x, xExW and there is an Lt such that tELtC\W and <p(t) <<p(f).

Since xLtELxt, LxiC\V9±\~f\ and xtEA. Since T has only two idem-

potent elements, (p(xt) 9£<j>(x). Since <p(xt) ̂ cp(x), d>(xt) <<p(x) and

<p(x) is not the minimal element of <¡>(A). This contradiction shows

that R is connected, it is clearly compact and hence a continuum. The

semigroup R has a zero {LeC\fS} and an identity/ and no other

idempotent elements. It follows from [7] that there is a standard

thread P from the zero of R to the identity of R. Letting ô be the

natural mapping of 0_1(7/)rV5 onto R and J=ô~l(P — {o}), we see

that N=J is the desired semigroup.

Let xEfS—Se and nEN(~\Lx, then xEfSn and hence x=ftn. But

<p(x)=<p(n)=<p(f)4>(t)d>(n) and thus <p(ft)=<p(f). Hence //EHf and
xEHs(N-Le). It follows that/5-5e = J3>(iV-I,i).

For use in the next lemma, we note that if e and/ belong to E with

Le = Lf then ef=e and fe=f.

Lemma 3. If fEE, then, for each eEL¡C\E, eS is topologically and
algebraically isomorphic to fS under the mapping ex—*fex.

Proof. Let 9:eS-*fS be defined by 6(x)=fx. If 0(x) = 0(y), then
fx=fy and efx = efy but then x = ex = ey = y and 0 is injective. It is

clear that 0 is surjective and by its definition continuous, hence 0 is

a    homeomorphism.    Now    d(xy)=fxy=fxey=fxefy=f(xe)fy=fxfy

= 0(x)0(y) and 0 is a homomorphism.

Theorem 2. Let T be a subsemigroup of S'. Suppose that T contains

exactly two idempotent elements g' and f and that T— [g',f] is a stand-

ard thread. Then, for each fE<P~l(f')f^E, there is a compact connected

subsemigroup N(f)EfS such that N(f) modulo (N(f)r\<f>~1(g')) is a
standard thread isomorphic to T, and Sf—Sg = Lf(N(f)—<j>~1(g')),

where gE<t>~l(g').

Proof. The first part of the theorem is a restatement of Lemma 2.

We let/be a fixed idempotent element in <p~l(f) and N(f) the com-

pact connected semigroup of Lemma 2. For eEL¡(~\E, we choose

N(e)=eN(f) by Lemma 3.

Let yESf—Sg, then yEeS for some eEL¡C\E. Hence y = pn, where

pEHeand nEN(e) —<p~l(g') by Lemma 2. Nowpf=p, so that y = pfn

and yELf(N(f)-cp-1(g')), since fnEfN(e)=fefN(f)=N(f) and the
conclusion follows.

Corollary. Under the same hypotheses as in Theorem 2, for each

xE<p-l(T)-4>-l(g'),Lx = Ljx.
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Proof. We note that N(f) meets each L set in at most one point

and the L sets are disjoint and fill up (¡>-1(T)—<j>~1(g'). Since <p~l(T)

— <P~1(è')=Ef(N(f)—<t>-1(g')), the conclusion follows.

For the remainder of this note, we continue to use the hypotheses

and notation of Theorem 2. Let us consider the mapping 5: LfXN(f)

-»5/ given by h(p, n)=pn. If we restrict § to (L/Pi/5) X N(f), then

o(p, n)EfS. Now, Ljr\fS=Hj is a compact topological group with

identity/. If x and y belong to N(f) and gEHf; then gx = gy implies

x = y, since N(f) meets each L set in at most one point. Let F be a

neighborhood of/ in fS such that, if xE VC\N(f) and p and qE VC\Hf,
with px = qx, then p = q. Then, for any a, b and c in V with ab = ac,

b = c. We see that if such a V exists, then there is an open set W of

Hf and an arc [x, /] EN(f) such that S| WX [x, f] is injective. Fur-

ther, S| WX(x,f] is a homeomorphism. We have then

Theorem 3. There is a local cross section at f in fS if there is a local

cancellation semigroup containing f in its interior.

Theorem 4. If Hf is a Lie group, then there is an arc (x, /] in N(f)

such thatfS-(<}rl[0, x]) ~H,X(x,f].

Proof. Let Hf he a Lie group, then, there is an xEN(f) such that

for all y EN (j)—xN if) and pEHf, Py = y implies p=f. Hence,

ô\H/X(x, f] is injective. Using the continuity of the decomposition

<£, and the compactness of H¡, it follows that S| H¡X(x,f\ is a homeo-

morphism.

If each He, for eEL¡, is a Lie group, it does not follow that there,

is an arc (x, /] such that Sf— 5x«L/X(x,/], for consider

Example 1. Let C denote the Cantor set with multiplication xy = x.

Let Ii be the usual unit interval and consider CXIi. If D is the upper

semicontinuous decomposition of CXh lor which CXA/D is the

Cantor fan then this is again a semigroup and there are no local cross

sections at the idempotent elements of the form (x, 1). However since

each L/C\fS= {/} the arcs N(f) are usual unit intervals and the cross

sections trivial.

However, we have the

Corollary. If, for each eEE, Le is a Lie group, then there is a cross

section, LeX(x, e], at each idempotent element e for which <p(e) is the

right hand end point of a unit or nil thread in S'.

Proof. This follows directly from Theorems 2 and 4.

We did not consider the compact connected idempotent subsemi-

groups of 5' due to



i962] LINEARLY QUASI-ORDERED COMPACT SEMIGROUPS 357

Example 2. Let Ri denote the reals modulo 1 and Iî the idempotent

semigroup on the unit interval with multiplication given by x-y

= min (x, y). Let T = RiXhXh and let 5 be the subsemigroup of T

given by 5= (RiXhX ¡0})U({0} X {o} Xh). Then 5 is a linearly
quasi-ordered semigroup and 5' is isomorphic to I¡. However, the

geometric realization of 5 as a cylinder with a free arc attached shows

that there are connected idempotent subsemigroups P in 5' such that

d>-1(P)9*LfN(f). Here the N(f) exist by [2, Lemma l].

Further examples can be found in [2] and [3].
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