
ON TRANSVERSALS OF SIMPLY CONNECTED REGIONS

ERNEST C. SCHLESINGER1

1. Introduction. In connection with work on the boundary be-

havior under conformai mapping [4] I have had to consider certain

curves, called "transversals"2 below. These are generalizations of

crosscuts of a simply connected region of the extended plane. Trans-

versals are defined by the principal separation property of crosscuts;

namely, they divide a simply connected region into two regions that

are again simply connected. This note is devoted to proving the theo-

rem that the union of two transversals of a simply connected region

has a complement (relative to the region) all of whose components

are themselves simply connected regions. Furthermore, the relative

boundary of each of these regions is either a Jordan curve or a union

of transversals.

Our theorem is an extension of a theorem of Kerékjártó [2, p. 87;

3, p. 168; 5, p. 108] to the effect that all complementary regions of a

pair of intersecting Jordan curves are simply connected and have

Jordan curves for their boundaries. The proof is based on the observa-

tion that our theorem is actually a version of Kerékjártó's result,

provided the latter is applied on the Alexandroff one-point compacti-

fication (see for example [l, p. 23]) of the given region.

Transversals have the desirable property that they are invariant

under topological mappings of the (open) region. This is no longer

true of ordinary crosscuts.

2. Definitions. We recall that a region is an open connected subset

of the extended plane. A region is called simply connected in case its

boundary is a continuum (which may degenerate to a point) or

empty, that is, in case its complement in the extended plane is con-

nected.

A crosscut of a region Q is a homeomorphic image of the open inter-

val (0, 1) in Í2 with the property that the homeomorphism is the re-

striction of a continuous map of the closed interval [0, l] into the

closure ß of Í2, where the images of 0 and 1 lie on T = bd Í2. (We do

not exclude the possibility that these two "endpoints" of the crosscut
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1 These curves were actually called "crosscuts" in [4]. The theorem of the present

paper enables one to prove Theorem 4 of [4] without the intervention of "generalized

crosscuts"—certain unions of transversals.
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coincide.) A crosscut of a simply connected region 0 separates ß into

two simply connected regions (see, for example, [2, p. 106; 5, p.

110]).
A transversal 7 of a simply connected region ß is a homeomorphic

image of the open unit interval (0, 1) in ß with the property that the

set-theoretic difference ß — y has exactly two components and that

these are simply connected. Thus, every crosscut of a simply con-

nected region is a transversal of the region. The converse of this state-

ment is false, since a transversal need not have "endpoints."

Let ß be a region. We denote its one-point compactification by

ß*: ß* = Çt\Jip„), where "pm" designates the added compactifying

point. If y is a subset of the region ß we shall use y and 7* for the

closures of 7 in the extended plane and in the compactification ß*,

respectively.

3. The Theorem. We state Kerékjártó's theorem and give two

auxiliary propositions that are needed to establish the main result.

Kerékjártó's Theorem. Let Ji and 72 be Jordan curves of the ex-

tended plane, and let J=JiUJi. If Ji and Ji have more than one point

in common, the boundary of each component of the complement iwith

respect to the extended plane) of J is itself a Jordan curve.

Lemma. Let ß be a region and let Y be its boundary {relative to the

extended plane). If y is a subset of ß then y intersects Y if and only if

P»Ey*.

Proof. By definition, pxEy* if and only if 7 meets the comple-

ment of every compact subset of ß. Clearly, this is equivalent with

the condition yí~\Y7¿0.

Corollary. If y is a transversal of a simply connected region ß then

7* is homeomorphic to a circumference. The homeomorphism can be

realized as an extension to [O, 1 ] of the homeomorphism <p0 of 7° = (0, 1)

to 7, with the images of 0 and of 1 identified at px.

Proof. It follows from the separating properties of transversals

and from the lemma that£xG7*. We now consider a sequence {pi}

of points pj = <poitj) itjEI0; J=l, 2, • • • ) of 7Cß*. The correspond-

ing sequence of numbers {iy} has a convergent subsequence. We as-

sume for convenience that {t¡} itself converges. If lim t,G7° then

po = hm p,Ey, since <po is a homeomorphism. On the other hand, if

lim t¡ is 0 or 1 then {p¡} must, at any rate have a subsequence {pJk}

that converges to a point of the closed compact set 7*. This limit

point can only be px: otherwise 7 would have an endpoint in the
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region ß, and this would contradict the separating properties of 7.

Hence, every sequence {f,} C^° with lim fy = 0 or lim t¡ = 1 must sat-

isfy lim <po(tj)=px. The homeomorphism <p defined by <p(t)=<po(t)

for tEI", and 0(0) =0(1) —p» is the required extension of <p0.

Theorem. Let 7 and 5 be transversals of a simply connected region

ß whose boundary Y is nonempty. Then the boundary relative to ß of

any component of Q — (yVJ5) is one of the following: (i) a Jordan curve,

(ii) a transversal of ß, or (iii) a pair of transversals. In cases (i) and (ii)

this relative boundary is a subset ofy\Jb, while it actually coincides with

7WS in case (iii).

Proof. We pass to the one-point compactification ß* = ßW (£«,).

In view of the lemma, the transversals 7 and S are "compactified" as

7* and 5*, where px belongs to 7*^5*. By the corollary, 7* and 5*

are Jordan curves in ß*.

a. Suppose that the intersection y*C\b* contains at least one point

besides px. Since 12* is homeomorphic to a sphere, we conclude from

Kerékjártó's theorem that every component of ß* — (è*VJy*) is a

Jordan region. Returning to ß we see that every component of

ß—(7W8) is a simply connected region whose boundary relative to

ß either is a Jordan curve or consists of a transversal of ß. The former

possibility takes place if the boundary of the image on ß* does not

pass through px, while the latter situation holds if p„ does belong to

the boundary of that image. Thus, we have either case (i) or case (ii).

b. On the other hand, if y*r\8*=(px) then on returning to ß

there will be one residual region of ß—(7US) that is a quadrangle.

Its boundary will consist of 7, a connected subset of V, 5, and a second

connected subset of V. Thus, case (iii) can occur. However, for a

given pair 7, 5, there is at most one residual region of this type, and

the other two are then of type (ii).
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