ON TRANSVERSALS OF SIMPLY CONNECTED REGIONS

ERNEST C. SCHLESINGER1

1. Introduction. In connection with work on the boundary behavior under conformal mapping [4] I have had to consider certain curves, called "transversals" below. These are generalizations of crosscuts of a simply connected region of the extended plane. Transversals are defined by the principal separation property of crosscuts; namely, they divide a simply connected region into two regions that are again simply connected. This note is devoted to proving the theorem that the union of two transversals of a simply connected region has a complement (relative to the region) all of whose components are themselves simply connected regions. Furthermore, the relative boundary of each of these regions is either a Jordan curve or a union of transversals.

Our theorem is an extension of a theorem of Kerékjártó [2, p. 87; 3, p. 168; 5, p. 108] to the effect that all complementary regions of a pair of intersecting Jordan curves are simply connected and have Jordan curves for their boundaries. The proof is based on the observation that our theorem is actually a version of Kerékjártó's result, provided the latter is applied on the Alexandroff one-point compactification (see for example [1, p. 23]) of the given region.

Transversals have the desirable property that they are invariant under topological mappings of the (open) region. This is no longer true of ordinary crosscuts.

2. **Definitions.** We recall that a region is an open connected subset of the extended plane. A region is called simply connected in case its boundary is a continuum (which may degenerate to a point) or empty, that is, in case its complement in the extended plane is connected.

A crosscut of a region Ω is a homeomorphic image of the open interval (0, 1) in Ω with the property that the homeomorphism is the restriction of a continuous map of the closed interval [0, 1] into the closure $\overline{\Omega}$ of Ω , where the images of 0 and 1 lie on $\Gamma = \operatorname{bd} \Omega$. (We do not exclude the possibility that these two "endpoints" of the crosscut

Presented to the Society, October 28, 1961; received by the editors May 9, 1961.

¹ The author acknowledges with gratitude several clarifying and stimulating conversations with Professors G. P. Johnson and H. Tong.

² These curves were actually called "crosscuts" in [4]. The theorem of the present paper enables one to prove Theorem 4 of [4] without the intervention of "generalized crosscuts"—certain unions of transversals.

coincide.) A crosscut of a simply connected region Ω separates Ω into two simply connected regions (see, for example, [2, p. 106; 5, p. 110]).

A transversal γ of a simply connected region Ω is a homeomorphic image of the open unit interval (0, 1) in Ω with the property that the set-theoretic difference $\Omega - \gamma$ has exactly two components and that these are simply connected. Thus, every crosscut of a simply connected region is a transversal of the region. The converse of this statement is false, since a transversal need not have "endpoints."

Let Ω be a region. We denote its one-point compactification by $\Omega^*: \Omega^* = \Omega \cup (p_{\infty})$, where " p_{∞} " designates the added compactifying point. If γ is a subset of the region Ω we shall use $\bar{\gamma}$ and γ^* for the closures of γ in the extended plane and in the compactification Ω^* , respectively.

3. The Theorem. We state Kerékjártó's theorem and give two auxiliary propositions that are needed to establish the main result.

Kerékjártó's Theorem. Let J_1 and J_2 be Jordan curves of the extended plane, and let $J = J_1 \cup J_2$. If J_1 and J_2 have more than one point in common, the boundary of each component of the complement (with respect to the extended plane) of J is itself a Jordan curve.

LEMMA. Let Ω be a region and let Γ be its boundary (relative to the extended plane). If γ is a subset of Ω then $\bar{\gamma}$ intersects Γ if and only if $p_{\infty} \in \gamma^*$.

PROOF. By definition, $p_{\infty} \in \gamma^*$ if and only if γ meets the complement of every compact subset of Ω . Clearly, this is equivalent with the condition $\bar{\gamma} \cap \Gamma \neq \emptyset$.

COROLLARY. If γ is a transversal of a simply connected region Ω then γ^* is homeomorphic to a circumference. The homeomorphism can be realized as an extension to [0, 1] of the homeomorphism ϕ_0 of $I^0 = (0, 1)$ to γ , with the images of 0 and of 1 identified at p_{∞} .

PROOF. It follows from the separating properties of transversals and from the lemma that $p_{\infty} \in \gamma^*$. We now consider a sequence $\{p_j\}$ of points $p_j = \phi_0(t_j)$ $(t_j \in I^0; j = 1, 2, \cdots)$ of $\gamma \subset \Omega^*$. The corresponding sequence of numbers $\{t_j\}$ has a convergent subsequence. We assume for convenience that $\{t_j\}$ itself converges. If $\lim t_j \in I^0$ then $p_0 = \lim p_j \in \gamma$, since ϕ_0 is a homeomorphism. On the other hand, if $\lim t_j$ is 0 or 1 then $\{p_j\}$ must, at any rate have a subsequence $\{p_{j_k}\}$ that converges to a point of the closed compact set γ^* . This limit point can only be p_{∞} : otherwise $\bar{\gamma}$ would have an endpoint in the

region Ω , and this would contradict the separating properties of γ . Hence, every sequence $\{t_j\} \subset I^0$ with $\lim t_j = 0$ or $\lim t_j = 1$ must satisfy $\lim \phi_0(t_j) = p_{\infty}$. The homeomorphism ϕ defined by $\phi(t) = \phi_0(t)$ for $t \in I^0$, and $\phi(0) = \phi(1) = p_{\infty}$ is the required extension of ϕ_0 .

THEOREM. Let γ and δ be transversals of a simply connected region Ω whose boundary Γ is nonempty. Then the boundary relative to Ω of any component of $\Omega - (\gamma \cup \delta)$ is one of the following: (i) a Jordan curve, (ii) a transversal of Ω , or (iii) a pair of transversals. In cases (i) and (ii) this relative boundary is a subset of $\gamma \cup \delta$, while it actually coincides with $\gamma \cup \delta$ in case (iii).

PROOF. We pass to the one-point compactification $\Omega^* = \Omega \cup (p_{\infty})$. In view of the lemma, the transversals γ and δ are "compactified" as γ^* and δ^* , where p_{∞} belongs to $\gamma^* \cap \delta^*$. By the corollary, γ^* and δ^* are Iordan curves in Ω^* .

- a. Suppose that the intersection $\gamma^* \cap \delta^*$ contains at least one point besides p_{∞} . Since Ω^* is homeomorphic to a sphere, we conclude from Kerékjártó's theorem that every component of $\Omega^* (\delta^* \cup \gamma^*)$ is a Jordan region. Returning to Ω we see that every component of $\Omega (\gamma \cup \delta)$ is a simply connected region whose boundary relative to Ω either is a Jordan curve or consists of a transversal of Ω . The former possibility takes place if the boundary of the image on Ω^* does not pass through p_{∞} , while the latter situation holds if p_{∞} does belong to the boundary of that image. Thus, we have either case (i) or case (ii).
- b. On the other hand, if $\gamma^* \cap \delta^* = (p_\infty)$ then on returning to Ω there will be one residual region of $\Omega (\gamma \cup \delta)$ that is a quadrangle. Its boundary will consist of γ , a connected subset of Γ , δ , and a second connected subset of Γ . Thus, case (iii) can occur. However, for a given pair γ , δ , there is at most one residual region of this type, and the other two are then of type (ii).

BIBLIOGRAPHY

- 1. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1960.
 - 2. B. v. Kerékjártó, Vorlesungen über Topologie. I, Berlin, 1923.
- 3. M. H. A. Newman, Elements of the topology of plane sets of points, 2nd. ed., Cambridge, 1954.
- 4. E. C. Schlesinger, Conformal invariants and prime ends, Amer. J. Math. 80 (1958), 83-102.
- 5. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. vol. 28, Amer. Math. Soc., New York, 1942.

WESLEYAN UNIVERSITY