CERTAIN HADAMARD DESIGNS

P. KESAVA MENON

1. The object of this paper is to construct Hadamard designs for the parameters

$$
\begin{equation*}
v=4 m^{2}-1, \quad k=2 m^{2}-1, \quad \lambda=m^{2}-1, \quad n=m^{2} \tag{1.1}
\end{equation*}
$$

where both $2 m+1$ and $2 m-1$ are prime powers.
2. Let $G F\left(p^{l}\right)$ be the Galois field of p^{l} elements and let x be a primitive element of the field. We shall denote the additive group of the field by F, the sets containing the odd and even powers of x by C_{ρ}, C_{θ} respectively, and the set consisting of the single element o by C so that

$$
\begin{equation*}
F=C+C_{0}+C_{0} . \tag{2.1}
\end{equation*}
$$

If A, B are two aggregates of elements of F we shall denote by $A B$ the aggregate formed by adding each element of A to every element of B. We shall also denote the aggregate obtained by taking $A a$ times by $a A$. Then we have the following

Lemma 1. If $p^{l} \equiv 1(\bmod 4)$, then

$$
\begin{align*}
C_{0} C_{0} & =\frac{p^{l}-1}{4}\left(C_{0}+C_{e}\right), \\
C_{0}^{2} & =\frac{p^{l}-1}{2} C+\frac{p^{l}-5}{4} C_{0}+\frac{p^{l}-1}{4} C_{0}, \tag{2.2}\\
C_{0}^{2} & =\frac{p^{l}-1}{2} C+\frac{p^{l}-1}{4} C_{0}+\frac{p^{l}-5}{4} C_{0} .
\end{align*}
$$

Proof. The aggregate $C_{o} C_{e}$ consists of the elements

$$
x^{2 r-1}+x^{2 s} \quad(r, s=1,2, \cdots,(p-1) / 2) .
$$

If $x^{k}=x^{2 r-1}+x^{2 s}$ then $x^{k+i}=x^{2 r-1+i}+x^{2 s+i}$ and one of $2 r-1+i, 2 s+i$ is even and the other odd for all i. It follows that all elements x^{k} have the same number of representations as the sum of an odd power and an even power of x. Moreover, since $x^{\left(p^{2}-1\right) 2}=-1$, and $\left(p^{l}-1\right) / 2$ is even by hypothesis, -1 belongs to C_{e} and hence the negative of

Received by the editors June 19, 1961.
every element of C_{6} belongs to C_{6} so that $C_{0} C_{6}$ does not contain the element o. It follows that

$$
C_{o} C_{0}=a\left(C_{0}+C_{0}\right),
$$

where a denotes the number of times each power of x occurs in $C_{0} C_{0}$. Equating the number of terms on either side we readily get

$$
a=\frac{p^{l}-1}{4}
$$

so that

$$
\begin{equation*}
C_{0} C_{0}=\frac{p^{l}-1}{4}\left(C_{0} \dot{+} C_{0}\right) \tag{2.3}
\end{equation*}
$$

Let us now observe that

$$
\begin{equation*}
C_{0} F=C_{0} F=\frac{p^{l}-1}{2} F . \tag{2.4}
\end{equation*}
$$

Subtracting (2.3) from (2.4) we get

$$
\begin{aligned}
C_{0}^{2}+C_{0} & =\frac{p^{l}-1}{2} C+\frac{p^{l}-1}{4}\left(C_{0}+C_{0}\right) \\
& =C_{0}^{2}+C_{\theta}
\end{aligned}
$$

which completes the proof of the lemma.
Lemma 2. If $p^{l} \equiv-1(\bmod 4)$, then

$$
\begin{align*}
C_{0} C_{0} & =\frac{p^{l}-1}{2} C+\frac{p^{l}-3}{4}\left(C_{0}+C_{0}\right), \\
C_{0}^{2} & =\frac{p^{l}-3}{4} C_{0}+\frac{p^{l}+1}{4} C_{0} \tag{2.5}\\
C_{0}^{2} & =\frac{p^{l}+1}{4} C_{0}+\frac{p^{l}-3}{4} C_{0} .
\end{align*}
$$

Proof. The proof is exactly as in Lemma 1 except that in this case -1 is in C_{0} so that C_{0} consists of the negative of the elements of C_{0} and hence

$$
C_{0} C_{0}=\frac{p^{l}-1}{2} C+a\left(C_{0}+C_{0}\right)
$$

where a is determined by equating the number of terms on either side.
3. We are now in a position to construct the designs in question, or equivalently to construct difference sets with the parameters (1.1).

Theorem 1. Let $2 m+1=p^{r}, 2 m-1=q^{s}$ where p, q are primes. Let F_{p}, F_{q} be the additive groups of the Galois fields $G F\left(p^{r}\right), G F\left(q^{*}\right)$ respectively and let $G=\left(F_{p}, F_{q}\right)$ be the direct-product of F_{p}, F_{q}. Let $C_{p}, C_{p, o}$, $C_{p, e} ; C_{q}, C_{q, o}, C_{q, e}$ denote the sets consisting of the zero element only, the odd powers of the primitive element and the even powers of the primitive element respectively of $F_{p} ; F_{q}$. Then the set S consisting of the pairs

$$
\left(C_{p}+C_{p, o}, C_{q, o}\right), \quad\left(C_{p}+C_{p, e}, C_{q, e}\right), \quad\left(C_{p}, C_{q}\right)
$$

is a difference set in G.
Proof. Let us write

$$
\begin{aligned}
& A=\left(C_{p}+C_{p, o}, C_{q, o}\right), \\
& B=\left(C_{p}+C_{p, e}, C_{q, e}\right), \\
& C=\left(C_{p}, C_{q}\right),
\end{aligned}
$$

so that

$$
S=A+B+C
$$

We shall consider the two cases $p^{r} \equiv \pm 1(\bmod 4)$ separately.
Case (i). Let $p^{r} \equiv 1(\bmod 4)$. Then $q^{s}=p^{r}-2 \equiv-1(\bmod 4)$. Hence

$$
\begin{aligned}
A A^{-1} & =\left(C_{p}+C_{p, o}, C_{q, o}\right)\left(C_{p}+C_{p, o}, C_{q, e}\right) \\
& =\left(\left(C_{p}+C_{p, o}\right)^{2}, C_{q, o} C_{q, e}\right), \\
B B^{-1} & =\left(C_{p}+C_{p, e}, C_{q, e}\right)\left(C_{p}+C_{p, e}, C_{q, o}\right) \\
& =\left(\left(C_{p}+C_{p, e}\right)^{2}, C_{q, o} C_{q, e}\right), \\
A B^{-1} & =\left(C_{p}+C_{p, o}, C_{q, o}\right)\left(C_{p}+C_{p, e}, C_{q, o}\right) \\
& =\left(\left(C_{p}+C_{p, o}\right)\left(C_{p}+C_{p, e}\right), C_{q, o}^{2}\right), \\
B A^{-1} & =\left(C_{p}+C_{p, e}, C_{q, e}\right)\left(C_{p}+C_{p, o}, C_{q, e}\right) \\
& =\left(\left(C_{p}+C_{p, e}\right)\left(C_{p}+C_{p, o}\right), C_{q, e}^{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
S S^{-1}= & \left(\left(C_{p}+C_{p, o}\right)^{2}+\left(C_{p}+C_{p, e}\right)^{2}, C_{q, 0} C_{q, e}\right) \\
& +\left(\left(C_{p}+C_{p, o}\right)\left(C_{p}+C_{p, e}\right), C_{q, 0}^{2}+C_{q, \mathrm{e}}^{2}\right) \\
& +A+B+A^{-1}+B^{-1}+C .
\end{aligned}
$$

Since $p^{r} \equiv 1(\bmod 4)$ we have, by Lemma 1 ,

$$
\begin{aligned}
\left(C_{p}\right. & \left.+C_{p, 0}\right)^{2}+\left(C_{p}+C_{p, 0}\right)^{2} \\
& =2\left(C_{p}+C_{p, 0}+C_{p, 0}\right)+C_{p .0}^{2}+C_{p, 0}^{2} \\
& =2 F_{p}+\left(p^{r}-1\right) C_{p}+\frac{p^{r}-3}{2}\left(C_{p, 0}+C_{p, 0}\right) \\
& =\left(\frac{p^{r}+1}{2}\right)\left(C_{p}+F_{p}\right)=(m+1)\left(C_{p}+F_{p}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(C_{p}\right. & \left.+C_{p, 0}\right)\left(C_{p}+C_{p, 0}\right) \\
& =C_{p}+C_{p, 0}+C_{p, \mathrm{e}}+C_{p, 0} C_{p, \mathrm{e}} \\
& =\left(\frac{p^{r}+3}{4}\right) F_{p}-\left(\frac{p^{r}-1}{4}\right) C_{p}=\frac{(m+2)}{2} F_{p}-\frac{m}{2} C_{p}
\end{aligned}
$$

and since $q^{*} \equiv-1(\bmod 4)$ we have, by Lemma 2 ,

$$
\begin{aligned}
C_{q, 0} C_{q, \mathrm{e}} & =\left(\frac{q^{s}-1}{2}\right) C+\left(\frac{q^{s}-3}{4}\right)\left(C_{q, o}+C_{q, \mathrm{e}}\right) \\
& =\left(\frac{q^{*}+1}{4}\right) C+\left(\frac{q^{*}-3}{4}\right) F_{q}=\frac{m}{2} C_{q}+\frac{m-2}{2} F_{q}
\end{aligned}
$$

and

$$
\begin{aligned}
C_{q, 0}^{2}+C_{q, \mathrm{e}}^{2} & =\left(\frac{q^{s}-1}{2}\right)\left(C_{q, 0}+C_{q, 0}\right) \\
& =\left(\frac{q^{s}-1}{2}\right)\left(F_{q}-C_{q}\right)=(m-1)\left(F_{q}-C_{q}\right) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
A+A^{-1}= & \left(C_{p}+C_{p, o}, C_{q, 0}\right)+\left(C_{p}+C_{p, o}, C_{q, 0}\right) \\
= & \left(C_{p}+C_{p, o}, C_{q, 0}+C_{q, e}\right), \\
B+B^{-1}= & \left(C_{p}+C_{p, e}, C_{q, 0}\right)+\left(C_{p}+C_{p, 0}, C_{q, 0}\right) \\
& +\left(C_{p}+C_{p, e}, C_{q, 0}+C_{q, 0}\right),
\end{aligned}
$$

so that

$$
A+A^{-1}+B+B^{-1}=\left(C_{p}+F_{p}, F_{q}-C_{q}\right) .
$$

Hence we have

$$
\begin{aligned}
S S^{-1}= & \left((m+1)\left(C_{p}+F_{p}\right), \frac{m}{2} C_{q}+\frac{m-2}{2} F_{q}\right) \\
& +\left(\frac{(m+2)}{2} F-\frac{m}{2} C_{p},(m-1)\left(F_{q}-C_{q}\right)\right) \\
& +\left(C_{p}+F_{p}, F_{q}-C_{q}\right)+\left(C_{p}, C_{q}\right) \\
= & \left\{\frac{m(m+1)}{2}+\frac{m(m-1)}{2}\right\}\left(C_{p}, C_{q}\right) \\
& +\left\{\frac{(m+1)(m-2)}{2}+\frac{(m+2)(m-1)}{2}+1\right\}\left(F_{p}, F_{q}\right) \\
= & m^{2}\left(C_{p}, C_{q}\right)+\left(m^{2}-1\right) G
\end{aligned}
$$

which proves that S is a difference set in G. Its parameters are easily seen to be

$$
v=4 m^{2}-1, \quad k=2 m^{2}-1, \quad \lambda=m^{2}-1, \quad n=m^{2}
$$

CASE (ii). Let $p^{r} \equiv-1(\bmod 4), q^{*}=p^{r}-2 \equiv 1(\bmod 4)$.
In this case

$$
\begin{aligned}
& A A^{-1}=\left(C_{p}+C_{p, 0}, C_{q, 0}\right)\left(C_{p}+C_{p, 0}, C_{q, 0}\right) \\
& \left.=\left(C_{p}+C_{p, 0}\right)\left(C_{p}+C_{p, \mathrm{e}}\right), C_{q, 0}^{2}\right), \\
& B B^{-1}=\left(C_{p}+C_{p, \mathrm{e}}, C_{q, \mathrm{e}}\right)\left(C_{p}+C_{p, 0}, C_{q, \mathrm{e}}\right) \\
& =\left(\left(C_{p}+C_{p, 0}\right)\left(C_{p}+C_{p, o}\right), C_{q, e}^{2}\right), \\
& A B^{-1}=\left(C_{p}+C_{p, 0}, C_{q, 0}\right)\left(C_{p}+C_{p, 0}, C_{q, 0}\right) \\
& =\left(\left(C_{p}+C_{p, 0}\right)^{2}, C_{q, 0} C_{q, 0}\right), \\
& A^{-1} B=\left(C_{p}+C_{p, 0,}, C_{q, 0}\right)\left(C_{p}+C_{p, 0}, C_{q, 0}\right) \\
& =\left(\left(C_{p}+C_{p, \mathrm{e}}\right)^{2} C_{q, 0} C_{q, 0}\right), \\
& A+A^{-1}=\left(C_{p}+C_{p, 0}, C_{q, 0}\right)+\left(C_{p}+C_{p, 0}, C_{q, 0}\right) \\
& =\left(C_{p}+F_{p}, C_{q, 0}\right), \\
& B+B^{-1}=\left(C_{p}+C_{p, 0}, C_{q, 0}\right)+\left(C_{p}+C_{p, 0}, C_{q, 0}\right) \\
& =\left(C_{p}+F_{p}, C_{q, e}\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
S S^{-1}= & \left(\left(C_{p}+C_{p, 0}\right)\left(C_{p}+C_{p, \mathrm{e}}\right), C_{q, 0}^{2}+C_{q, \mathrm{e}}^{2}\right) \\
& +\left(\left(C_{p}+C_{p, o}\right)^{2}+\left(C_{p}+C_{p, \mathrm{o}}\right)^{2}, C_{q, 0} C_{q, \mathrm{e}}\right) \\
& +\left(C_{p}+F_{p}, F_{q}-C_{q}\right)+\left(C_{p}, C_{q}\right)
\end{aligned}
$$

But, by Lemma 1,

$$
\begin{aligned}
C_{q, 0}^{2}+C_{q, 0}^{2} & =\left(q^{*}-1\right) C_{q}+\frac{q^{*}-3}{2}\left(C_{q, 0}+C_{q, 0}\right) \\
& =\frac{\left(q^{*}+1\right)}{2} C_{q}+\frac{q^{*}-3}{2} F_{q}=m C_{q}+(m-2) F_{q}, \\
C_{q, 0} C_{q, 0} & =\frac{q^{*}-1}{4}\left(C_{q, 0}+C_{q, 0}\right)=\frac{m-1}{2}\left(F_{q}+C_{q}\right)
\end{aligned}
$$

and, by Lemma 2,

$$
\begin{aligned}
\left(C_{p}\right. & \left.+C_{p, 0}\right)\left(C_{p}+C_{p, \mathrm{e}}\right) \\
& =C_{p}+C_{p, 0}+C_{p, \mathrm{e}}+C_{p, 0} C_{p, 0} \\
& =F_{p}+\frac{p^{r}-1}{2} C_{p}+\frac{p^{r}-3}{4}\left(C_{p, 0}+C_{p, \mathrm{e}}\right) \\
& =\frac{p^{r}+1}{4}\left(F_{p}+C_{p}\right)=\frac{m+1}{2}\left(F_{p}-C_{p}\right) \\
\left(C_{p}\right. & \left.+C_{p, 0}\right)^{2}+\left(C_{p}+C_{p, 0}\right)^{2} \\
& =2\left(C_{p}+C_{p, 0}+C_{p, \mathrm{e}}\right)+C_{p, 0}^{2}+C_{p, 0}^{2} \\
& =2 F_{p}+\frac{p^{r}-1}{2}\left(C_{p, 0}+C_{p, 0}\right) \\
& =\frac{p^{r}+3}{2} F_{p}-\frac{p^{r}-1}{2} C_{p}=(m+2) F_{p}-m C_{p} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
S S^{-1}= & \frac{m+1}{2}\left(F_{p}+C_{p}\right), m C_{q}+(m-2) F_{q} \\
& +\left((m+2) F_{p}-m C_{p}, \frac{m-1}{2}\left(F_{q}-C_{q}\right)\right) \\
& +\left(C_{p}+F_{p}, F_{q}-C_{q}\right)+\left(C_{p}, C_{q}\right) \\
= & \left(\frac{m(m+1)}{2}+\frac{m(m-1)}{2}\right)\left(C_{p}, C_{q}\right) \\
& +\left\{\frac{(m+1)(m-2)}{2}+\frac{(m+2)(m-1)}{2}+1\right\}\left(F_{p}, F_{q}\right) \\
= & m^{2}\left(C_{p}, C_{q}\right)+\left(m^{2}-1\right) G
\end{aligned}
$$

which again shows that S is a difference set in G with the parameters

$$
v=4 m^{2}-1, \quad k=2 m^{2}-1, \quad \lambda=m^{2}-1, \quad n=m^{2}
$$

thereby completing the proof of the theorem.
4. A simpler description of the difference set is possible in the case where $2 m+1$ and $2 m-1$ are both primes. We have then the following

Theorem 2. If two consecutive odd numbers p, q are primes, then the set S consisting of
(i) the prime residue classes $z(\bmod p q)$ such that

$$
\left(\frac{z}{p q}\right)=1,
$$

where

$$
\left(\frac{a}{b}\right)
$$

is the Jacobi symbol, and
(ii) the residue classes $p z(\bmod p q)$, if $p \equiv 1(\bmod 4)$, or the residue classes $q z(\bmod p q)$ if $q=1(\bmod 4)$, is a difference set in the additive group of residues $(\bmod p q)$, having the parameters

$$
v=4 m^{2}-1, k=2 m^{2}-1, \lambda=m^{2}-1, n=m^{2}
$$

Proof. Any prime residue class $z(\bmod p q)$ can be written in the form

$$
z=p x+q y
$$

where x and y are prime residue classes $(\bmod q)$ and $(\bmod p)$ respectively. Now

$$
\begin{aligned}
\left(\frac{z}{p q}\right) & =\left(\frac{p x+q y}{p}\right)\left(\frac{p x+q y}{q}\right) \\
& =\left(\frac{q y}{p}\right)\left(\frac{p x}{q}\right)=\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)\left(\frac{y}{p}\right)\left(\frac{x}{q}\right)=\left(\frac{x}{q}\right)\left(\frac{y}{p}\right),
\end{aligned}
$$

since one of p, q is of the form $4 l+1$. Hence

$$
\left(\frac{z}{p q}\right)=1
$$

if and only if either both x, y are quadratic residues or both nonresidues $\bmod q, \bmod p$ respectively.

It follows that in the decomposition of the additive group of residues $z(\bmod p q)$ into the direct product of the additive groups of residues $(\bmod q)$ and $(\bmod p)$ respectively defined by

$$
z \rightarrow(y, x)
$$

the set of residues $z(\bmod p q)$ for which

$$
\left(\frac{z}{p q}\right)=1
$$

goes into the union of the sets

$$
\left(C_{p, o}, C_{q, o}\right),\left(C_{p, e}, C_{q, e}\right)
$$

where $C_{p, e}, C_{p, 0}$ are the sets of quadratic residues, nonresidues, respectively of p and $C_{q, e}, C_{q, o}$ are the sets of quadratic residues, nonresidues respectively of q.

Under the correspondence $p z(\bmod p q)$ goes into $(0, z)$:

$$
p z \rightarrow(0, z)
$$

and $q z(\bmod p q)$ goes into $(z, 0)$:

$$
q z \rightarrow(z, 0)
$$

It follows that the whole set of residues $p z(\bmod p q)$ corresponds to the set

$$
\left(C_{p}, F_{q}\right)
$$

and the set of residues $q z(\bmod p)$ corresponds to the set

$$
\left(F_{p}, C_{q}\right)
$$

where F_{p}, F_{q} are the additive groups of residues $\bmod p, \bmod q$ respectively and C_{p}, C_{q} are their subsets consisting of their zeros only. Thus the set S in the theorem corresponds to the union of

$$
\left(C_{p}+C_{p, o}, C_{q, 0}\right), \quad\left(C_{p}+C_{p, e}, C_{q, e}\right), \quad\left(C_{p}, C_{q}\right)
$$

in case $p \equiv 1(\bmod 4)$, and to the union of

$$
\left(C_{p, o}, C_{q}+C_{q, o}\right), \quad\left(C_{p, e}, C_{q}+C_{q, e}\right), \quad\left(C_{p}, C_{q}\right)
$$

in case $q \equiv 1(\bmod 4)$ which is, in either case, a difference set in the group (F_{p}, F_{q}), by Theorem 1 . The set S is therefore itself a difference set in the additive group of residues $(\bmod p q)$.

New Delhi, India

