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This note is concerned with the following problem. Let H denote a

subgroup of a finite group G and let P denote a linear or one dimen-

sional representation (i.e., a character) of H. We assume throughout

that the field F is algebraically closed and is either of characteristic 0

or of prime characteristic which does not divide the order of any

groups under consideration. Let G|P denote the corresponding in-

duced representation of G. How many distinct (i.e., nonequivalent)

irreducible representations appear in the decomposition of G|P into

irreducible parts? (This number is just the central intertwining num-

ber of G\ L, which is denoted by QS(G\ L). Cf. [l ].) More specifically,

we are interested in determining an upper bound on the number of dis-

tinct irreducible representations which will appear, purely in terms

of the way 77 is embedded in G, and in terms which do not depend

on the particular linear representation P of H. Two such bounds

come quickly to mind. The number of classes (of conjugates) of the

super group G, which we denote }G: e), is clearly an upper bound.

Dimension considerations also give [G: 77] as an upper bound. We

now introduce a new group theoretic invariant which heuristically

is a measure of the manner in which the classes of G are distributed

among the 77-cosets of G.

Definition. Let 77 be a (not necessarily normal) subgroup of a

finite group G. For each normal subset N of G, let <f>i(N) denote the

number of classes (of conjugates) of G contained in N. Let <pt(N)

denote the number of right 77-cosets of G which have nonzero inter-

section with N. Let <I>(N)= {G:e\ -dn(N)+(p2(N). We then define
the embedding number of 77 in G, denoted by (G: 77), to be the mini-

mum of the <t>(N), as N is taken over all normal subsets of G. We re-

mark that a definition of <p2 using left cosets would yield the same

value for (G: 77) since A-1 intersects the same number of left cosets

as N does right cosets.

Taking N= {e\ where e is the identity element of the group we

have (G:77)g{G:e}. Taking N=G we have (G: 77) ̂  [G: 77]. If
Ht¿G, it is easy to verify that (G: 77) > 1. If 77is a proper normal sub-

group, then, taking N = H we have (G: H) <{G: e\. In the case

where 77 is a normal subgroup of G, another number associated with

the embedding of 77 in G is the number of classes in the factor group

G/77. We call this the class number oí H in G and denote it by {G: 77}.
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Proposition 1. If H is a normal subgroup of a finite group G, then

{G:H}^(G:H).

Proof. Suppose (G: H)=m. Then there exists a normal subset, say

N of G, such that N contains n classes of G and intersects c 77-cosets

such that m= {G: e\—n+c. Note that w^c since m=(G:H)

^ {G : e}. Let A denote the smallest normal subset of the factor group

G/77, containing the c 77-cosets which have nonzero intersection with

N. Then the number of classes of G/77 contained in A is less than or

equal to c. Let N'= {x: xEG and x is contained in some 77-coset be-

longing to A}. Then N' is a normal subset of G such that AC A' and

thus A' contains at least n classes of G. Then (G — N') is a normal

subset of G and contains at most \G:e\—n classes of G. Thus

(G/77—A) contains at most {G: e] — n classes of G/77. Further A

contains at most c classes. Hence G/77 contains at most {G : e} — n+c

= m classes. Hence {G: 77} ̂ (G: 77).

Thus in general we have {G: 77} g(G: 77) ̂  [G: 77]. If G/77 is

abelian this degenerates to {G: 77} = (G: 77) = [G: 77]. Now that we

have a relative idea of how this new "embedding number" compares

with the group theoretic invariants usually associated with the em-

bedding of 77 in G, we proceed to show the significance of (G: 77)

in the theory of monomial representations. We must first prove a

preliminary result.

Lemma. Let H be a subgroup of a finite group G and let L denote a

linear representation of 77, over the field F. Let G \ L denote the corre-

sponding induced representation of G. Let Pi, D2, • • • , Pn+i denote

distinct classes of G and let St= X^e»< (G\ E)x,for i = 1, 2, • • • , n + l.
If these n + l classes are completely contained in the union of n right H-

cosets of G, then the Si}i=l,2, ■ ■ ■ , n + l, are linearly dependent over

F.

Proof. Index the right P7-cosets of G, {77o-y}, j=l, • • • , k, in

such a way that £>< C U"_i 77cry, for i=l, 2, • ■ • , n + l. Then

{<rj~l:j = l, • • • ,k\ form a set of representatives of the left 77-cosets

of G. By [l, Corollary to Theorem 3], it is sufficient to show that

there exists cti, a2, ■ • • , an+i in F, not all zero, such that ^"tl aißa

= 0 for ,7 = 1, • • • , k, where p\y= £*e.r1i>infl £* and ßa = Q if 07 ̂ D,

C\H is empty. Since L is linear we have ßaEF. Consider the set of

homogeneous linear equations

n+l

Y, ßijXi = 0, j = I, • • ■ ,n.

This system has n equations and n + l unknowns and thus has a non-
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trivial solution, say Xi = aiEF. Hence EJÍ/ a»/3¿y = 0for j = 1, •••,«.
By our indexing of the if-cosets we have that ajlDir\H=DiaYir\H

= (Dir>\Ho-j)o-71 is empty (and thus /3j,- = 0), for j>n and i=l, ■ ■ ■ ,

n+1. Hence £w «¿|3„ = 0 for j= 1, • • ■ , k.

Theorem. Let H denote a subgroup of a finite group G and let L be a

linear representation of H. Then the number of distinct irreducible repre-

sentations appearing in the decomposition of the induced representation

G\L is less than or equal to (G: H).

Proof. There exists a normal subset N of G such that (G: H)

= n — m+<]>i(N), where «= {G: e} and m = d>i(N). Let Ci, C2, • • • , Cm

denote the classes of G which are contained in N and let Cm+i,

Cm+2, • • • , Cn denote the remaining classes of G. Let Si

= EieCj (G\L)x, for î=1, 2, •••,«. By the previous lemma there

are at most <pî(N) elements among the Si, i^i^m, which are linearly

independent over the field F. Hence there are at most « — m+d>i(N)

= (G:H) linearly independent elements among the 5„ l^i^n. By

[l, Theorem l], QS(G\L) ^(G: H). That is to say, the number of dis-

tinct irreducible representations appearing in the decomposition of

GIL is less than or equal to (G: H).

Corollary. Let H denote an abelian subgroup of a finite group G.

Then [G:e\ g(G: H)[H:e].

Proof. Let L denote the regular representation of H. Then

Qâ(L) = {ií: e} = [H: e] and each irreducible representation appear-

ing in the decomposition of L is linear. Thus by the theorem QS(G\ L)

^ (G: H) [H: e]. But G\ L is the regular representation of G and thus

e¿(G|L)={G:e}.
Remark.2 If ii is a normal subgroup of G and L is the one-dimen-

sional identity representation of H, then G\ L contains exactly {G: H}

distinct irreducible representations of G. Indeed it is sufficient to note

that G|L is the composition of the natural projection of G on G/H

and the regular representation of G/H. The following proposition

gives a sufficient condition for {G: H} to be an upper bound to the

number of distinct irreducible representations appearing in the de-

composition of G|í,, where L is any linear representation of H. The

referee conjectures that {G: H} is such an upper bound whenever H

is a normal subgroup of G.

Proposition 2. Suppose H is a normal subgroup of G such that each

class of H is also a class of G. Then for every linear representation L

of H, G\L contains at most {G: H} distinct irreducible representations.

1 We are indebted to the referee for this remark.
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Proof. The projection of each class of G onto G/77 is contained in

a class of G/77. Suppose Pi and D2 are two classes of G whose projec-

tions on G/77 are contained in the same class of G/H. Then the projec-

tions of Pi and P2 on G/77 have nonempty intersection. Thus there

exists xEDi, yED2 and hEH such that x = hy.

Note that under our hypothesis (G\ L)ghg-1 = LhI for all gEG, where

7 is the identity operator on 3C(G¡P). Indeed for all g, zEG, and

/G3C(G|P) we have (G\L)„h^f(z)=f(zghg-1) = L2ghf^f(z) = Lhf(z),
where we have used the fact that P is constant on the classes of H.

Let «¿ denote the number of elements in the class P<, for i=l, 2.

Then we have

*—>       i ni     __       ,
Si =   ¿Z (G | L)z = —-j £ (G | ¿U-i

»eUi [G.e\ 0ea

Ul    V      I l
=  r„  i  ¿-i (G | L)qhg-i(G | L)avo-

\G:e\  geo

ft.

—      f„      1    Lh    ¿2    (G\   L)gyg-
[G:e\       seö

= -Lh  D (G|L).
W2 îëDj

= f-L^52-
\«2 /

Thus {G: 77} is an upper bound for the number of linearly inde-

pendent conjugate sums Si and thus also for the number of distinct

irreducible representations appearing in the decomposition of (G|P).

For the theorem to have significance it is necessary to show that

(G:H) is indeed a better upper bound than those already known,

namely {G:e} and [G: 77]. Let G be the symmetric group on 4

letters. Let 77 denote the normal abelian subgroup of G of order 4.

Then all the numbers associated with the embedding of 77 in G are

distinct. Indeed [G:77] = 6, {G:e}=5, (G: 77) =4 and {G:77}=3.
It would be interesting to know if the embedding number (G: 77)

has any significance in any other context than in the theory of group

representations which are induced from characters.
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