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It is well known [l] that the Hill's equation

y" + P(t)y - o

with p(t) periodic with period T, has either two linearly independent

bounded solutions, or at least one unbounded solution. In the former

case the solutions are said to be stable. Lyapunov [2] proved the

following sufficient condition for stability, for the case where p(t) ^0:

' r pd)dt
J 0

< 4.

Several other criteria have been found and are discussed in reference

[1].
This article will consider the case, where p(t) is an even, positive,

periodic and differentiable function. One can define two solutions yi,

y2 by the initial conditions

yi(0) = 1,       y2(0) = 0,

y'i(0) = 0,       3-2(0) = 1.

From the general theory of Hill's equation [3] one can show that if

yi(t) ̂  o,

y'2(t) ^ 0, for 0 g / g T/2,

then all solutions must be bounded.

The following theorem will now be proved.

Theorem. A sufficient condition for the boundedness of all solutions of

y" + p(t)y = 0,

where p(t) is an even, positive, differentiable function of period T, is that

m !    rTi*\p'(t)\Ç.TI2 !      f.
(P(t)yi2dt + -

J a 4 J n4 J o      I p(t)
dt g tt/2.
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The proof is based on the fact that the solutions yi and y2 can be

represented as

y\ = Aiii) cosfr(i), y2 = A2(t) sinfr(t),

yi = - (p(t))ll2Ai(t) sin frit),       y'i = (p(t)yi2A2(t) cosfr(t).

These representations have been discussed and used in a general

analysis of the Sturm-Liouville spectrum [4]. A direct calculation

shows that

1   p'it)
fr' =(p(t))1'2+(-y--^i-sin2fr

4   pit)

p'it) /sin     X2
a: = - A^-^-l   fr),

2pit) Veos    /

and

A,i0) = 1,       «,(0) =0, v - 1, 2.

The A have to be exponentials and therefore cannot vanish. There-

fore the condition that yi and y2 are non-negative in the interval

[O, T/2], is equivalent to

I fr\   g v/2    in    [0, T/2], j/ = 1, 2.

Thus we obtain the sufficient condition

frdt
a

1 rTI2 1 rTI2p'(t)
(p(t))ll2dt +(-)"— ^TT sin 2frdt

IJ a 4 J a       p(t)

CTI2 1  rTI2\p'(t)\       *
á (p(t))1lHt + - Adtú-

J 0 4 J a p(t) I 2

One can observe that for the case where p(t) is a positive constant,

say X, Lyapunov's criterion yields

X ú 4/T2,

whereas the present criterion yields

X g ir2/T2,

which is the best possible estimate.
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COMPARISON THEOREMS FOR LINEAR DIFFERENTIAL
EQUATIONS OF SECOND ORDER

WALTER LEIGHTON1

1. In this paper we consider self-adjoint differential equations of

the form

(1) [r(x)y']' + p(x)y = 0,

where r(x) and p(x) are continuous and r(x)>0 on an interval

a<x<ß. By rewriting a theorem in the calculus of variations in a

form which emphasizes the behavior of solutions of the Euler-Jacobi

equation rather than that of the functional which gives rise to it we

are led to observe that the theorem provides a completely general

comparison theorem for equations of the form (1). We show that the

Sturm and Sturm-Picone2 theorems may be regarded as special cases

of this theorem and incidentally provide in the process useful gen-

eralizations of these theorems.

We associate with (1) the functional

I =  f  (ru'2 - pu2)dx,

where the closed interval [a, b] E(a, ß). If u(x) and r(x)u'(x) are

functions of class C on [a, b] and if u(a) = u(b) =0, we shall say that
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