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1. Introduction. Let I2 be the Hilbert space of square summable

sequences /=(/o, /i, /2, • • ■ )■ I2 is isomorphic to the space 772 of

functions holomorphic in the unit disk A with square integrable

boundary values, under the map

(1.1) f->F,       F(z) = ¿/„z\
n=0

A Toeplitz operator is an I2 linear operator T to which corresponds a

function W on the unit circle V, such that under the isomorphism

(1.1) we have for the inner product

(1.2) (Tf, g) = - f ' W(6)F(e<°)G*(e«)dd.
2irJ-r

Here * denotes complex conjugation.

This work is concerned with the concrete spectral theory of

Toeplitz operators that are associated with functions W that satisfy

the following two hypotheses:

(i) W is real, bounded below, and absolutely integrable on V, but

it is not equivalent to a constant function.

(ii) For each real X the set Tx= {d: W(ß)^\} is, modulo a set of

measure zero, an arc of the circle.

By concrete spectral theory we mean2 that we exhibit an explicit

sigma-finite measure p on (— oo, ») and an explicit unitary cor-

respondence U:l2—*L2(dp) such that UTU-1=M, where M is the

multiplication operator on L2(dp) which sends g(\) into Xg(X).

Hypothesis (i) implies that T is bounded below, so its Friedrichs ex-

tension (again named T) is self-adjoint.

I am deeply indebted to the referee, who simplified the proof and

helped clarify the exposition.

The results obtained are conveniently described in terms of the

set of vectors k(u)El2 defined for each w£A by

Received by the editors May 12, 1960 and, in revised form, June 29, 1961.
1 The author is a National Science Foundation fellow.

1 This description applies only to operators with simple spectrum. The hypotheses

given guarantee that T has simple spectrum, but this is not in general true for

Toeplitz operators, cf. [6].
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(1.3) k„(u) = U», ko(0) = 1.

Under the correspondence (1.1) it follows that K(u; z) = (l — uz)~l,

and thus for each f El2 we have

(1.4) (f, k(u*)) = F(u).

Let E be the spectral measure of T. In Theorem 3 we find that there

is an absolutely continuous measure p on the line given by (3.3) and

a collection of functions $(u; X) given by (3.2) such that for all

u, üGA and each real Borel set A

(1.5) (E(A)k(u), k(v)) = j $(«; \)**(v, \)dp(X).

According to (2.7) and Lemma 1 the functions <Ï>(m; X) are for almost

all X holomorphic functions of m(EA with the Maclaurin expansion

00

(1.6) $(«; X) = £ <t>n(\)u\
n=0

For fixed «£A, d>(«; \)EL2(dp). Now the transformation k(u)

-+$(u; X) defined on the set 3C= {k(u):uE&} in I2 with range in

L2(dp) preserves inner products as can be seen by taking A = ( — o°, ■» )

in (1.5). Since X. is total in l2, ci. (1.4), it follows that there exists a

unique isometry U: l2-*L2(dp) such that Uk(u) =$(u; X). This trans-

formation has the explicit form below obtained from (1.3) and (1.6):

00

(1.7) i//=E/»*»-
0

We next note that (1.5) implies that for each real Borel set A, U

sends E(A)k(0) into the product of the indicator function of A and

$(0; X). Since by (3.2) $(0; X) is almost everywhere nonzero, it

follows that the range of U is L2(dp). Thus U is a unitary mapping

of I2 onto L2(dp).

As a corollary of the fact that (1.7) is a unitary equivalence we con-

clude that {<pn} is a complete orthonormal set in L2(dp). So we see

that <p(ti ; X) is a generating function for a complete orthonormal set of

functions in L2(dp). In the examples at the end we specify W so as

to obtain certain Gegenbauer and Pollaczek polynomials.

2. Analysis of Toeplitz matrices. Suppose now that hypothesis (i)

is satisfied, and set X0 = ess inf W. It is known, [l], that whenever

X <Xo there is a factorization

(2.1) W(0) -X=  |i?x(eie)|2,
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where H\ is an outer function in 772, i.e., the set {z"77x(z) }£.0 1S total

in H2. H\ is uniquely specified if we impose the normalization P7\(0)

>0. The explicit formula is

(2.2) Hx(u) = exp   f   log (W(6) - \)P*(u*, 6)dd, « G A

where

1
P(u, 6) = — (1 + ueie)(l - ue")-1.

4w

Thus whenever X<Xo and T is given by (1.2) we may write

T—\ = S*S\, where 5\ is the operator which under the map (1.1)

transforms into multiplication by H\, i.e.

(2.3) Sxf^HxF.

From (1.4) we easily compute that

(2.4) Sx*¿(«) = Hf(u*)k(u).

Since H\ is an outer function, S\ and 5* have densely defined inverses.

Hence (P-X)-1 = 5r1^-1. Using (2.4) we see that

(2.5) ((T - X)-^(«), k(v)) = Hf-Ku^HjrKv*)(k(u), k(v)).

It is useful to rewrite this formula using (2.2) and the fact that

(k(u), k(v)) = (l-uv*)~1. We obtain

((T - \)~lkiu), k(v))

(2 5') C
= (1 - mí»*)-1 exp -  I     log (W(B) - \)[P(u, 6) + P*(v, 6)]dd.

For u, »GA, the right hand side of (2.5') is holomorphic in the X-

plane cut along the real axis from Xo to <». Thus (2.5') provides an

analytic continuation of the resolvent of T. We will apply the Stieltjes

inversion formula

in ^   d(E(\)k(u), k(v))/d\ = — lim {<(r - x - mO-xJK«>, *(»)>
(2.6) 27TÍ « i o

- ((T-X + Uy-^iu), k(v))}

to (2.5'), making use of the following

Lemma 1. For almost all real X

;.
flog I W(B) -\\dd> - oo.
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Proof. Let z=\+ie, e>0,and consider I(z) =flT log (W(0) -z)d0.

This equals

k f   log [(W(0) - z)(l + W(0)2)-u2]dQ,

where k=(l/2)flT log [l + W(0)2]dB. Thus

I(z) =  f    log [(t - z)(l + t2)-"2]da(t),
J  -00

where a is bounded and monotone. Upon partial integration we have

I(z)=fZ„[(t-z)-1-t(l+t2)-l]a(t)dt.'Yhus lim«i01(z) exists a.e. and

lime¿o Re 7(z) = limi|o f-„ log   \W(0)—\+ie\d0 is finite a.e. The
lemma now follows from this by monotone convergence.

The lemma allows us to conclude that

(2.7) *(«;X) = exp - f   log | W(0) - X | P(u, 8)dd

defines for almost all X a holomorphic function of «£A.  Let Tx

= \0: W(0)^\}. Evidently

lim log (W(d) - X ± it) = log | W(6) - X |   when 0 <£ rx
«io

= log | W(6) - X |   ± ri when 8 E IV

We can now calculate the right-hand side of (2.6) from (2.5'). The

result is

Theorem 1. Let T be a Toeplitz operator defined by (1.2), where W

satisfies hypothesis (i). Then the resolution of the identity ECK) of T

satisfies a.e.

d(E(\)k(u), k(v))/d\

= 7T-1^(«;X)1i'*(ti;X)(l - Mt^sin iw J    [P(u, 6) + P*(v, 0)]dd\ .

Theorem 1 describes the absolutely continuous part of T. That

this is a complete description follows from

Theorem 2. Let T be a Toeplitz operator defined by (1.2) where W

satisfies hypothesis (i). Then the spectral resolution of T is weakly

absolutely continuous with respect to Lebesgue measure.

Proof. See [6]. Theorem 2 makes use of the assumption that W is

not equivalent to a constant. The two theorems combined show that

the spectrum of T is purely continuous and consists of the closed



594 MARVIN ROSENBLUM [August

interval [ess inf W, ess sup W\. This result is known, cf. [3 and 4].

What remains to be done is to exploit Theorem 1. This will require

the use of hypothesis (ii).

3. Concrete spectral theory. We shall need the simple computa-

tional

Lemma 2. If0^b-a^2ir,

Í.
1                     1

P(u, 6)dd = —(b- a) +-log[(l - ueia)(l - we")-1].
4îT 2vÍ

Hypothesis (i) says that Tx = {o(X) go = &(X)} where0g&(X)-o(X)

5j2ir. From Lemma 2 we have

■J"  [P(u,0)+P*(v,8)]d8

(3.1)

x

1
=— (b-a)+(2i)-1log [(l-ueia)(l-v*e-ii)(l-ueib)-1(l-v*e-ia)-1\

where a = a(\) and b = b(K). The main theorem is

Theorem 3. Let T be a Toeplitz operator defined by (1.2) where W

satisfies hypotheses (i) and (ii). Then in the spectral decomposition of T

we have for each real Borel set A

(1.5) (E(A)k(u), k(v)) =   \ Hu; \W(v;\)dp(\)

where

(3.2) $(«; X) = *(u; X)(l - ue"*»)-1'^ - ue«™)-1'2

and

(3.3) «X)=lr-.si»i[W-«(X,],X.

Proof. With the aid of (3.1) the sine term in the formula of Theo-

rem 1 can be calculated. We obtain

d(E(\)k(u), k(v))/d\ = *(m; \)$*(v, X)p'(X)

for almost all X where p'(X) =dp(K)/d\. Theorem 2 asserts that the

set function (E(-)k(u), k(v)) is absolutely continuous, whence the

assertion of Theorem 3 follows.

Corollary 1. The functions $(u; X) are for almost all\ holomorphic

functions of w£A with the Maclaurin expansion (1.6). The mapping
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^: {fn 1 —> y," fn4>n is a unitary transformation of I2 onto L2(dp) such

that UTU~l = M, where Jlf:g(X)-*Xg(X).

Proof. See the introduction.

4. Examples. The results obtained are:

Example 1. W(0)=cos0.

p'(X) = ir-Kl - X2)1'2, |X|   <1

= o, IM = i-
Hu; X) = 21'2(1 - 2Xm + M2)"1,

<MA) = 21/2Cr}(X),    where   Cn\\)

is the wth Gegenbauer polynomial of order 1, cf. [2, p. 174].

Example 2. W(0) = sin 0. p'(X) is as in Example 1.

$(«; X) = 21'2(1 - 2i\u - u2)-\

<bn(\)   =  2m(-i)nC{n\\).

Example 3. W(0) = 1 if |ö| gc; =0 otherwise. Here 0<c<w.

1
p'(X) = — sin c if 0 < X < 1, = 0 otherwise,

ir

Set /3= — 1/2tt log 0rl-l). Then

$(w; X) = e«*(l + e-2*eyi2(l - ue-")'1'2^! - Me")_1/2+ii,

<^»„(X) = e*(l + e'2^yi2PnW2)(ß, c),

where P%/2)(ß, c) is the «th Pollaczek polynomial, cf. [5], of order

1/2 for (- oo, co).
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