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A NOTE ON FINITE FIELDS!
L. CARLITZ

1. Let g be a power of an odd prime and let F=GF(¢") denote the
finite field of order g». Let F* denote the multiplicative group of the
nonzero elements of F and let Z be the subgroup of F* of order
(¢—1)/(g—1). It will be assumed that

1 (q -1, q;::) = 1.

Then every nonzero element £ of F has a representation

2 E=af (a € GF(g), ¢ € 2),
and the representation is unique. For {EZ, {#1, put

Q) 1—¢=1)a(®),

where 7({) EGF(q), c($) EZ.

Put Z,=Z—{1}. In a letter to the writer, J. G. Thompson has
raised the question whether the mapping {—0a({) defined by (3) can
be a permutation of Z;. We shall show that the answer is negative.

Indeed let us assume that the mapping {—a({), is a permutation of
Zy. In view of (1) the mapping {—{¢? ! isa permutation of Z; and con-
sequently if we put

fi=>0 =9t = (o))
then {—¢; is a permutation of Z;. We recall that
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"1
Ser=0 (1§r<"’ )

tez g—1
so that
(4) Zr=—1 1srsg¢-1).
t€zZ,
Since

a=0Q-=-prt=14¢4+ ... 4!
it follows that

® IR TEID DI I S DI = SIS D & )

t1€21 - tez, tez, tez,

But

"o
S1=L£7 " _1-0 (P,
t€z, q_l

so that (5) becomes
“1l==(@-1=1,

a contradiction since ¢ is odd.
We may accordingly state

THEOREM 1. The mapping {—o({) defined by (3) is not a permutation
Of Zl.

In view of Theorem 1, there exist two distinct elements £, 7 in Z;
such that

(6) 1—-¢&=oaf, 1—19=24g,
where o, BEGF(q), { €Z;; clearly aB. Thus (6) implies
@) 1—n=N1-9,

where A=8/a is a number of GF(g) distinct from 1. Conversely if
(7) holds and we put 1 —£=af, where a€EGF(q), { €Z, then it follows
that

1 — 9 =2Xaf = .
Thus (6) and (7) are equivalent. We remark also that if the pair
(£, ) satisfy (7), then the same is true of (£9, 99), - - -, (£, o),

so that solutions of (7) with N\ fixed occur in sets of d, where d is
some divisor of 7.

2. To generalize Theorem 1, we may consider the finite field
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GF(pm) where pisa prime, p*—1=rs, (r,s)=1,r <sand r#1 (mod p).
Let F* denote the the multiplicative group of the nonzero elements of
GF(p*) and let Y, Z denote the subgroups of F* of order r and s
respectively. Since (r, s)=1, the intersection of ¥ and Z consists
of the identity element only. Thus every element £ of F* hasa unique
representation

€)) E=nf ey, se2).
For {€Z, {#1, put
9 1—¢=1()e),

where 7({) €Y, o($)EZ.

Put Z,=Z— {1}. We shall show that the mapping {—¢({) is not
a permutation of Z,. For if we assume that {—¢({) is a permutation
of Z,, then since (r, s) =1 it follows that

(10) foh=0=-9r

is also a permutation of Z;. Now

(11) Si=2¢=0 1stss—1).
ez

Indeed if {; denotes a generator of Z, then
fnSe=2 () =X ¢ =S
teZ tez

Since £ #1, (11) follows at once.
Next expanding (1—{)" we get

f= E(—l)‘( ')r‘.
t=0 l
Summing over all {EZ, we get
r r
(12) 2 =2 (—1)'( )Er'.
$1€2, t=0 t tez,

We now make use of (11) and in addition recall that r <s. Then (12)
reduces to

—1=(s—1)—-£(—1)‘(:)=s—(1—1)'.

tm=l
Since r#1 (mod p), we have a contradiction. This proves
THEOREM 2. Let p»—1=rs, where (r, s)=1, r<s, r#1 (mod p).
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Then the mapping $—a (L) defined by (9) is not a permutation of Z,.

As a consequence of Theorem 2 there exist two distinct elements
€1, $2in Z such that

(13) 1—-¢1=mn, 1= ¢ =9,
where 1, 1:€ Y, { €Z;; clearly n15%9,. Clearly (13) implies
(19) 1—¢f=9(1 -2y,

where 7 is a number of ¥ distinct from 1. Conversely if (14) holds and
we put 1—§ =, where mEY, {€Z,, then 1 —§Es=ym{ =1 with
7€ Y. Thus (13) and (14) are equivalent.

In the next place if { is any element of Z then { =a" for some « in
F*, Thus (14) becomes

(15) 1 —az = (1 — ay).

In this equation we think of % as fixed and ai, a2 as the unknowns.

Davenport and Hasse [1, p. 173] have discussed equations of the
form (15). If N is the total number of solutions of (15) then, special-
izing their result, we have (g=2")

| N = q| S r(r— 1)gr2
In particular if r=0(g!%) then N is of order ¢'/2.
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