REFERENCES

- 1. H. Bachmann, *Transfinite Zahlen*, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), vol. 1, Springer-Verlag, Berlin, 1955. vii +204 pp.
- 2. G. Birkhoff, Lattice theory, revised edition xiii+283 pp., Amer. Math. Soc., Providence, R. I., 1948.
- 3. G. Grätzer and E. T. Schmidt, Two notes on lattice congruences, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 1 (1958), 83-87.

University of California, Berkeley

A NOTE ON FINITE FIELDS1

L. CARLITZ

1. Let q be a power of an odd prime and let $F = GF(q^n)$ denote the finite field of order q^n . Let F^* denote the multiplicative group of the nonzero elements of F and let Z be the subgroup of F^* of order $(q^n-1)/(q-1)$. It will be assumed that

$$\left(q-1,\frac{q^n-1}{q-1}\right)=1.$$

Then every nonzero element ξ of F has a representation

(2)
$$\xi = \alpha \zeta \qquad (\alpha \in GF(q), \zeta \in Z),$$

and the representation is unique. For $\zeta \in \mathbb{Z}$, $\zeta \neq 1$, put

$$(3) 1 - \zeta = \tau(\zeta)\sigma(\zeta),$$

where $\tau(\zeta) \in GF(q)$, $\sigma(\zeta) \in Z$.

Put $Z_1=Z-\{1\}$. In a letter to the writer, J. G. Thompson has raised the question whether the mapping $\zeta \rightarrow \sigma(\zeta)$ defined by (3) can be a permutation of Z_1 . We shall show that the answer is negative.

Indeed let us assume that the mapping $\zeta \to \sigma(\zeta)$, is a permutation of Z_1 . In view of (1) the mapping $\zeta \to \zeta^{q-1}$ is a permutation of Z_1 and consequently if we put

$$\zeta_1 = (1 - \zeta)^{q-1} = (\sigma(\zeta))^{q-1}$$

then $\zeta \rightarrow \zeta_1$ is a permutation of Z_1 . We recall that

Received by the editors June 29, 1961.

¹ Supported in part by National Science Foundation grant G 16485.

$$\sum_{\xi \in \mathbf{Z}} \xi^r = 0 \qquad \bigg(1 \le r < \frac{q^n - 1}{q - 1} \bigg),$$

so that

(4)
$$\sum_{\zeta \in Z_1} \zeta^r = -1 \qquad (1 \le r \le q-1).$$

Since

$$\zeta_1 = (1 - \zeta)^{q-1} = 1 + \zeta + \cdots + \zeta^{q-1}$$

it follows that

(5)
$$\sum_{\zeta_1 \in Z_1} \zeta_1 = \sum_{\zeta \in Z_1} 1 + \sum_{\zeta \in Z_1} \zeta + \cdots + \sum_{\zeta \in Z_1} \zeta^{q-1}.$$

But

$$\sum_{k\in\mathbb{Z}_1} 1 = \frac{q^n-1}{q-1} - 1 = 0 \quad (\text{in } F),$$

so that (5) becomes

$$-1 = -(q-1) = 1$$

a contradiction since q is odd.

We may accordingly state

THEOREM 1. The mapping $\zeta \rightarrow \sigma(\zeta)$ defined by (3) is not a permutation of Z_1 .

In view of Theorem 1, there exist two distinct elements ξ , η in Z_1 such that

$$(6) 1 - \xi = \alpha \zeta, 1 - \eta = \beta \zeta,$$

where α , $\beta \in GF(q)$, $\zeta \in Z_1$; clearly $\alpha \neq \beta$. Thus (6) implies

$$(7) 1 - \eta = \lambda(1 - \xi),$$

where $\lambda = \beta/\alpha$ is a number of GF(q) distinct from 1. Conversely if (7) holds and we put $1 - \xi = \alpha \zeta$, where $\alpha \in GF(q)$, $\zeta \in Z_1$ then it follows that

$$1 - \eta = \lambda \alpha \zeta = \beta \zeta$$
.

Thus (6) and (7) are equivalent. We remark also that if the pair (ξ, η) satisfy (7), then the same is true of $(\xi^q, \eta^q), \dots, (\xi^{q^{n-1}}, {}^q\eta^{n-1})$, so that solutions of (7) with λ fixed occur in sets of d, where d is some divisor of n.

2. To generalize Theorem 1, we may consider the finite field

 $GF(p^n)$ where p is a prime, $p^n-1=rs$, (r,s)=1, r < s and $r \not\equiv 1 \pmod p$. Let F^* denote the the multiplicative group of the nonzero elements of $GF(p^n)$ and let Y, Z denote the subgroups of F^* of order r and s respectively. Since (r, s)=1, the intersection of Y and Z consists of the identity element only. Thus every element ξ of F^* has a unique representation

(8)
$$\xi = \eta \zeta \qquad (\eta \in Y, \zeta \in Z).$$

For $\zeta \in \mathbb{Z}$, $\zeta \neq 1$, put

$$(9) 1 - \zeta = \tau(\zeta)\sigma(\zeta),$$

where $\tau(\zeta) \in Y$, $\sigma(\zeta) \in Z$.

Put $Z_1 = Z - \{1\}$. We shall show that the mapping $\zeta \to \sigma(\zeta)$ is not a permutation of Z_1 . For if we assume that $\zeta \to \sigma(\zeta)$ is a permutation of Z_1 , then since (r, s) = 1 it follows that

$$(10) \zeta \to \zeta_1 = (1 - \zeta)^r$$

is also a permutation of Z_1 . Now

(11)
$$S_t = \sum_{t \in \mathbb{Z}} \zeta^t = 0 \qquad (1 \le t \le s - 1).$$

Indeed if ζ_1 denotes a generator of Z, then

$$\zeta_1^t S_t = \sum_{\xi \in \mathbb{Z}} (\zeta_1 \zeta)^t = \sum_{\xi \in \mathbb{Z}} \zeta^t = S_t.$$

Since $\zeta_1 \neq 1$, (11) follows at once.

Next expanding $(1-\zeta)^r$ we get

$$\zeta_1 = \sum_{t=0}^r (-1)^t \binom{r}{t} \zeta^t.$$

Summing over all $\zeta \in Z_1$ we get

(12)
$$\sum_{\zeta_1 \in Z_1} \zeta_1 = \sum_{t=0}^r (-1)^t \binom{r}{t} \sum_{\zeta \in Z_1} \zeta^t.$$

We now make use of (11) and in addition recall that r < s. Then (12) reduces to

$$-1 = (s-1) - \sum_{t=1}^{r} (-1)^{t} {r \choose t} = s - (1-1)^{r}.$$

Since $r \not\equiv 1 \pmod{p}$, we have a contradiction. This proves

THEOREM 2. Let $p^n-1=rs$, where (r, s)=1, r < s, $r \not\equiv 1 \pmod{p}$.

Then the mapping $\zeta \rightarrow \sigma(\zeta)$ defined by (9) is not a permutation of Z_1 .

As a consequence of Theorem 2 there exist two distinct elements ζ_1 , ζ_2 in Z_1 such that

(13)
$$1 - \zeta_1 = \eta_1 \zeta, \qquad 1 - \zeta_2 = \eta_2 \zeta,$$

where $\eta_1, \eta_2 \in Y$, $\zeta \in Z_1$; clearly $\eta_1 \neq \eta_2$. Clearly (13) implies

(14)
$$1 - \zeta_2 = \eta(1 - \zeta_1),$$

where η is a number of Y distinct from 1. Conversely if (14) holds and we put $1-\xi_1=\eta_1\zeta$, where $\eta_1\in Y$, $\zeta\in Z_1$, then $1-\xi_2=\eta\eta_1\zeta=\eta_2\zeta$ with $\eta_2\in Y$. Thus (13) and (14) are equivalent.

In the next place if ζ is any element of Z then $\zeta = \alpha^r$ for some α in F^* . Thus (14) becomes

(15)
$$1 - \alpha_2^r = \eta (1 - \alpha_1^r).$$

In this equation we think of η as fixed and α_1 , α_2 as the unknowns. Davenport and Hasse [1, p. 173] have discussed equations of the form (15). If N is the total number of solutions of (15) then, specializing their result, we have $(q = p^n)$

$$|N-q| \leq r(r-1)q^{1/2}.$$

In particular if $r = o(q^{1/4})$ then N is of order $q^{1/2}$.

REFERENCE

1, H. Davenport and H. Hasse, Die Nullstellen der Kongruenz-zetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.

DUKE UNIVERSITY