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1. Introduction. A real »-square matrix S = (sí¡) is called doubly

stochastic if Sij^O and

¿—i Sij     ¿—i &ii     i>

i-i <-i

1 g i,j :_ n.

Let /„ denote the «-square doubly stochastic matrix all of whose

entries are 1/« and let per(S) denote the permanent of S,

n

per(S) = £ II Si..(o,
e    t=l

where the sum is taken over all permutations a of 1, • • • , w.

In 1926 B. L. van der Waerden [6] proposed the following prob-

lem: What is the minimum of per(S) as S ranges over all doubly

stochastic «-square matrices? It is conjectured that

(1.1) per(S) ^ per(/„) =

This was proved for « = 3 in [3] and for all positive semi-definite

doubly stochastic matrices in [4]. Clearly (1.1) implies that for any

doubly stochastic 5 there exists a permutation a such that

(1.2) IT ■*>>(»>
i

In the present paper we prove (1.2). This result was obtained inde-

pendently by A. J. Hoffman, and we are indebted to him for com-

municating his results to us.

In general the positive semi-definite square root of a positive semi-

definite doubly stochastic A need not be a doubly stochastic matrix.

For example there exists no doubly stochastic B satisfying A = B2 for

A =

[3/4     0      1/4'

0     3/4    1/4

1/4    1/4    1/2.
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The proof of this last statement follows Theorem 2. However, if

au^l/(n— 1), i=l, ■ ■ ■ , n, then the positive semi-definite square

root of A is doubly stochastic.

A useful tool in investigating combinatorial properties of doubly

stochastic matrices is the following form of the Frobenius-König

theorem [2]. Let A be any «-square matrix and M a subset of the

entries of A. Each diagonal d.— [at,.a)}, i= 1, ■ • ■ , w, a a permuta-

tion on 1, ■ • • , «, intersects M in at least k entries if and only if M

contains an sXt submatrix of A with s+t = n+k.

We use this result to show that if A is «-square doubly stochastic

and l^&â«, then there are at least n — k + 1 elements of some di-

agonal of A which are bounded below by a positive constant depend-

ing only on « and k and not on A. From this we obtain the following

geometric theorem : if X and Y are two orthonormal sets of « vectors

in a unitary «-space then for each k the vectors Xi in X and y< in Y

can be so ordered that, for ¿ = 1, • • • , n — k + 1, \ (xit y,)| is bounded

below by a constant u(n, k) depending only on « and k and such that

n(n, k)>p(n, k — 1). For k=l these results can be found in [S],

Finally we prove that if (« —l)(w —1)! + 1 of the terms in the

permanent expansion of an «-square doubly stochastic matrix are

equal and nonzero then the matrix must be Jn.

2. Results.

Theorem 1. For any doubly stochastic n-square matrix S=(stJ)

there exists a permutation a such that

n 1

n si,'d) ̂  —
i_i      «n

with equality if and only if S= Jn.

Proof. Let

( t log t       if í > 0.
fit) = \

lO ifi = 0.

Then / if a strictly convex function on the closed interval [0, 1 ].

Define F as a function on ßn, the convex polyhedron of all «-square

doubly stochastic matrices, to the reals by

F(S) = £/(*«).
t.j

It is easy to see that F is strictly convex on ßn in the sense that

F(0S+(1-0)T)^0F(S) + (1-0)F(T), O<0<1, with equality if and
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only if S=T. Observe that, for any permutation matrix P, F(PS)

= F(S). Hence if P is a full cycle permutation matrix

F(S) = — £ F(P"S)
n a„o

/ n-l   Da     \

= WZ-s)
\a=0   «       /

= F(JnS)

= F(7B)

1
= n log — ;

«

with equality if and only if PaS= S for all a, i.e. if and only if S—J„.

Now, let S= (sij)E&n. It is known [l] that there exist permutations

a such that I7?_i s<,»(,)>0. Hence max, YLt-i stxo>0 and we can

consider max, ¿Jl-\ l°g *<.»(«• Let P—(pi,) be a permutation matrix

in ñ„. Clearly
n

max £ l°g *<•»«) = max £ £« log ««<

Now, let T=(ti,) he any matrix in ß„. Then £í.í i.-,Tog Sy is linear

in T and therefore takes its maximum on a permutation matrix, a

vertex of the convex polyhedron fl„. Thus

max £ />,7 log 5,7 = max £ ¿,;- log Sy
P£*>n   U rec„   ,-,/

à E/(*ö)«./

1
^   M log — •

n

It follows that max, H"-i s¡,j(i)el/»* with equality if and only if

S=Jn. For, if max, YL"-i *•>«)= l/w" then P(5) = n log 1/w and thus

5= J„. Conversely, if S=Jn then clearly Ylî-i ^«.»«) = l/wn for all <r.

We next consider conditions under which the unique positive semi-

definite determination of the square root of a positive semi-definite

matrix is doubly stochastic.

Theorem 2. Let A be a positive semi-definite n-square doubly sto-

chastic matrix with au^l/(n—l), i=l, • • ■ , n. Then there exists a

doubly stochastic matrix T such that T2 = A.
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Proof. Let «i = 1, a*, • • • , a„ be the characteristic values of A.

Let U be an orthogonal matrix whose first column entries are all

l/«1'2 and such that U'A i/=diag{ai, ■ • ■ , an} =D. Let

T= i/diag{(a1)1'2, •• -Aany^U'.

Then T2 = A and we must show that

h 10, E h - 1. £ './ = 1.

Now í,y= E* Uikakll2Ujk so that

£ <</ = £ uikak     E %*•
i k

U is orthogonal, hence for &> 1

while £y M;i = «1/2. Hence

E1/2    1/2 1        1 1/2 1
<ö = «ii«i «   = -rr1'M ' = i-

Similarly E» Ui"*!- Now suppose fl0/0<0 for some ¿o, Jo. Then

£ ti»i = M > 1    since     E '<« = L

Then m2 = ( £,w„ i.v)2 = ( £,w„ &)(»-!)• Thus

^^   2 ^   s M2 1

O.Vo = 2^ <«V = 2^ '<oJ = -7 > -7 '
i i*h n - 1      « - 1

a contradiction.

To see that at<^ l/(»— 1) cannot be dropped consider the example

given in the introduction:

3/4     0      1/4

A =     0     3/4    1/4 .

.1/4    1/4    1/2.

A is positive definite. Now suppose that A =B2, B = (bij)E^h. Then

(2.1) bnbu + buba + biibn = 0,

(2.2) b2ibu + 622621 + buba = 0,
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(2.3) on + ¿12621 + bnb3i = 3/4

(2.4) btibiî +     ¿>22 + b23bi2 = 3/4

Since all ba are non-negative, (2.1) implies that the first row or the

second column has two 0 entries; the third entry must therefore be 1.

Similarly (2.2) implies that there must be an entry equal to 1 in the

second row or in the first column. Since P obviously is not a permuta-

tion matrix it can have at most one entry equal to 1. Thus either bu

or ¿>22 must be equal to 1. But (2.3) and (2.4) imply that b\i ̂  3/4 and

¿>22 = 3/4. Contradiction.

Theorem 3. If A is a doubly stochastic n-square matrix then for each

integer k, lúkún, there exists a permutation a such that ai^i^^ufor at

least n — k+l distinct values of i, where

4k

(n+k)2

4k
n =

(n + k)2 - 1

if n+ k is even,

if n + k is odd.

Proof. Suppose that every diagonal of A has fewer than n — k + l

elements greater than or equal to u on it. That is, in every diagonal

there are at least k elements less than ß. Hence by the Frobenius-

König theorem, A contains an sX( submatrix M of elements less

than u where s+t — n+k. By permuting rows and columns of A we

may assume that A is in the following form:

M B

D

Let 53A7 denote the sum of the elements in M. Then ^M<stp. Now

¿2 M + £ B = s,

adding 2Y,M+Y,B+Y,C=s+t = n+k. Also ¿ZM+^B+^C
+ JZF>=¿ZA=n. Hence ¿2M-^D = k and J^M^k. Also £lf
<stp so that
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£iif      k
u> ->-

St max st

where max st is the largest value st takes on, subject to s+t = n+k.

Now, if n+k is even, then

(n + k)2
max st =->

and if n+k is odd, then

fn+k- l\/n + k + 1\      (n + k)2-l
max

_ /n + k - l\/n + k + l\ _ (n + k)

Hence if n+k is even

and if n+k is odd

u>
4k

(n + k)2

u>
Ik

(n + k)2-l

an impossibility.

The bound a in Theorem 3 is best possible in the sense that there

exist matrices for each « and k which have the property that no di-

agonal contains n — k + 1 elements greater than u.

Proof. Case (i): n + k is even (p. = 4k/(n + k)2). Let

Ik 4Ä: 2 2

A =

(m-M)2 (n + k)2   n+k n+k

4k 4k

(n+k)2

2

(n+k)2   n+k

2

n+k n + k
0

0

n + k

0

n+k n+k

where the upper left submatrix of elements 4k/(n+k)2 is (n + k)/2-
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square. Since the upper left submatrix has the sum of its dimensions

equal to n+k it follows that every diagonal has at least k elements

equal to 4k/(n + k)2 = u and hence no diagonal can have n — k + l ele-

ments greater than fi.

Case (ii): n + k is odd (p. = 4k/(n+k)2— 1). Let

A =

4k 4k

(n+k)2-I (n+k)2-I   n+k-I n + k-I

4k 4k

(n + k)2 - 1

2

n+k + l

{n+k+l

(n+k)2-I   n+k-I

2
0

n+k + l

n+k + l

n + k-l

0

0

where  the   upper  left  corner  of  elements  4k/((n + k)2 — 1)   is

(n+k-l)/2X(n+k + l)/2.

Corollary. Let X and Y be two orthonormal sets of n vectors in a

unitary n-space. Then for each integer k the vectors Xi in X and y i in

Y can be ordered so that, for i=l, ■ ■ ■ , n — k + l,

(*<,*)!* à

4k

(n + k)2

4k

[(n+k)2-I

Proof. Let an — | (xit y,) \2. Then

if n + k is even,

if n + k is odd.

1 =IMI2=Z \(xi,y,)\2

and   l = ||yy||2= £?-i | (*i,   yy)|2,   by   Parseval's   formula.   Hence

A = (ai}) is doubly stochastic and the result follows.

Lemma. If (n—l)(n—l)\ + l terms in the permanent of an n-square

matrix A have a common nonzero value then A has rank 1.

Proof. Note that A cannot have a zero entry and use induction

on n.
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The lemma is trivial for « = 2. Assume that if products of entries in

(» —2)(« —2)! + l diagonals of an (« —l)-square matrix have equal

nonzero value then the matrix is of rank 1.

Let A be any «-square matrix which has at least (« —1)(« — 1) ! + l

diagonals with equal products. Then at least {((« — l)(w — 1) !+l)/«}

of these have a common element in the first row, where \p} denotes

the least integer such that p á {p} ; let the element be an. Now

{((»-1)(«-1)! + 1)/»} ^(«-2)(«-2)!+l. For

{((« - 1)(« - 1)! + 1)/»} - (« - 2)(« - 2)! - 1

= {(» - 2)!((» - l)2 - «(» - 2))/» - 1 + 1/«}

= ¡((»-2)1 + 1)/»} -1

which is non-negative for «^2. Hence by the induction hypothesis

A h is of rank 1, where A a is the submatrix obtained by deleting row

i and column j of A.

There must be another element Oi, in the first row of A through

which pass at least {((»-l)(«-l)!+l-(«-l)!)/(«-l)} of the

diagonals which have equal products. But

{((« - 1)(« - 1)! + 1 - (« - l)!)/(« - 1)}

= {(«- l)!-(»-2)!+l/(«-l)}

= (n - 1) ! - (« - 2) ! + 1

= («- 2)(w- 2)!+ 1.

Therefore, by the induction hypothesis, Au is also of rank 1 and thus

the (« —1)X« submatrix of A consisting of all rows of A except the

first is of rank 1.

Now we apply the same argument to two elements in the last row

and show that the submatrix of A consisting of all rows of A except

the last is of rank 1. Hence A is of rank 1.

Theorem 4. If A is an n-square doubly stochastic matrix and

Aj^Jn then at most (« —1)(« — 1) ! terms in the permanent expansion of

A can have a common nonzero value.

Proof. By the above lemma if per(.4) has more than (n — l)(w — 1) !

terms with a common nonzero value then A is of rank 1 and it is

easily seen that /„ is the only rank 1 doubly stochastic matrix.
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CARDINALITY OF LEVEL SETS OF RADEMACHER SERIES
WHOSE COEFFICIENTS FORM A GEOMETRIC

PROGRESSION1

W. A. BEYER

1. Introduction. With 0<r<l, put

ß*(a, r) = {*  ¿ r'Ri(x) = a; 0 < x g l|

where Ri(x) is the ith Rademacher function and \a\ < ^^Li r*. This

paper discusses the cardinality of the set ß*(a, r) [hereafter denoted

by card ß*(a, r)]. The only previous discussion known to the author

is a remark of Levy [4]. Denote (\/5 —1)/2 by 5. In [2] we have

shown that if l>r>5, then the Hausdorff dimension of ß* is ^1/n

where n is the least no such that

»o > {log (2r - 1) - log(r2 + r - l)}/(-log r).

Note that as r—»5 + , n—► <». Hence card ß*(a, r)=c (cardinal number

of the continuum) for l>r>S. It is known that card ß*(a, r)^l for

0<r<l/2;ß*(a, r) = 1 or 2 for r= 1/2. This leaves the range 1/2<r

g S in question. The question is completely settled for r = b by Theo-

rem 1. The range l/2<r<5 is discussed briefly in §4.
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