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1. Introduction. Let F be a vector space of dimension « over some

field k of characteristic 9*2 with an orthogonal geometry as in [l,

Chapter III]. Let 0(V) be the orthogonal group of V, 0'(V) the

subgroup of elements of determinant 1 and spinor-norm 1 and Í2( V)

the commutator subgroup of 0(V). It is well known that 0'(V)

= fi(F) if (i) w^3 or (ii) V is isotropic. If «>3 and V is anisotropic

this is no longer in general true. Our interest focuses on the case

where k is a local field (i.e., a field complete with respect to a discrete

non-archimedean valuation with finite residue class field k). Then it

is well known that V is isotropic if «S5. Hence we are left with the

consideration of « = 4 and V anisotropic. In [4] Kneser states that

in this case 0'(V)9*Ü(V) and indeed it is not hard to show that

(O'(V): Q(V)) = 2 if the characteristic of k>2. It is the purpose of

this note to prove that 0'(V) = il(V) when k is the field of 2-adic

numbers.1

2. Preliminaries. Let us denote the symmetry with respect to the

hyperplane perpendicular to the nonisotropic vector A by ta. We

have

Proposition 1. Let V have dimension n and suppose o- = taJa2 ■ • •

TAnEO(V). Define a new space V.= (Al)L(Al)L ■ ■ ■ ±{An') by

setting (Ai)2 = A2fori=l, 2, • • ■ , «. Suppose Vand V, are isometric.

ThenaEti(V)^-lv0EÜ(V,).

Proof. Let cp: V,-+Vbe an isometry. Then «¡>0(V,)4rl = 0(V). Set

Bi = c¡>AÍ fort" = 1,2, • • • ,«. Then<p( — lv,)4rl = <p(TA,1TA2 ■ ■ ■TAn)<P~l

= T+A'J*A't • ■ ■ t^a^tbJb, ■ ■ ■ TBn=TAiTA, ■ • • ta„ mod Q(V). Since

o- = tAitA} • • -TAn we are through.

Proposition 2. Let V be 4-dimensional and suppose aEO'(V).

Then a necessary condition that <r$fi(F) is that a have the form

TAlTA2TA3TAt and A\, A\, A\, A\ lie in distinct classes of k* modulo k*2.

Presented to the Society, January 25, 1962 ; received by the editors August 4, 1961.

1 O. T. O'Meara informs me that he has proved this for any local field with char-

acteristic k = 2 using different methods.
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Proof. If a is the product of two symmetries, a = ta¡ta„ then

(rGfi(F) as is shown in [l, Theorem 5.14]. Hence a has the form

TAjAtTAjAf If the A2 do not lie in distinct classes of k* modulo k*2 we

may assume (since the issue is mod ß(F)) that A\ = A\. Then by

Witt's Theorem, there exists \EOiV)  such  that ^42 = Xj4i.  Thus

a = TAlTAiTA3TAi = TAlT\AlTA3TAi = TA^'rAÍK-lTA,TAi = TA3TAi      mod      ß( V)

and we are in the situation already dealt with at the beginning of the

proof.

Although our main concern is over the field of 2-adic numbers we

now prove, for the sake of completeness, the following

Theorem 1. Let k be a local field with residue class field k of char-

acteristic >2. Let V be a 4-dimensional anisotropic space over k. Then

(0'(F):fl(F)) = 2.

Proof. Since ik*: k*2) =4, it follows immediately from Proposition

2 that (O'(F): 0(F)) ^2. We may choose as representatives for

k* modulo k*2 1, v, ir, v-K where v is a nonsquare unit and ir is a prime.

Since V is anisotropic, we may write F in the form V=(Ai)±-(A2)

JL <¿3) -L (At) with A\ = 1, A\ = - v, A\ = ir and A\ = - wv. Let

U=(Ai)l.(A2). There exists BEU such that B2 = v as one easily

verifies. Likewise, there exists CE U* with C2 = irv. Set <t = ta1tbTa,tc.

Then Dieudonne's technique (see [2, p. 93]) suitably modified shows

that o-££ß(F) and the theorem is proved.

3. Main result. We now assume that F is a 4-dimensional vector

space over the field of 2-adic numbers. Furthermore we assume that

V possesses an orthogonal geometry that is anisotropic and note for

future use that V is unique up to isometry. (For a proof, see [3,

Satz 7.3].)

Lemma. —IvE^iV).

Proof. We may set V=(Ai)l-(Ai)MAz)UAi) with A2 = l for

i= 1, 2, 3, 4. Then — Iv = ta1taítAítaí and hence is in fl(F) by Propo-

sition 2.

Theorem 2. 0'(F) = ß(F).

Proof. It suffices to show that 0'iV)QtiiV). Thus let aEO'iV).

By Proposition 2 we may assume o = taJaJaJa, with the A2 in

different classes of k* modulo k*2. We may take 1, 3, 5, 7, 2, 6, 10, 14

as representatives of k* modulo k*2 and note that there are exactly

14 possibilities a i for a defined by the set {AX, A\, A\, A\\. We list
these and also note whether or not the corresponding V,i of Proposi-

tion 1 is anisotropic by an asterisk.
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i oí in {A\, Al Al A\]

1 1, 3, 5, 7
2 2, 6, 10, 14
3* 1,3,2,6
4* 1, 3, 10, 14
5 1, 5, 2, 10
6* 1, 5, 6, 14
7 1, 7, 2, 14
8 1,7,6,10
9 3, 5, 6, 10

10 3, 5, 2, 14
11 3,7,6,14
12* 3, 7, 2, 10
13* 5, 7, 10, 14
14* 5,7,2,6    .

By Proposition 1, the lemma and the fact, already noted, that all

4-dimensional anisotropic spaces are isometric we see that <r3, <Tt, fft,

an, oi3 and an E $l(V). To complete the proof first note that

o=r mod î2(F)<=>ot£Œ(F). Now aiaz=Ou mod Ü(V). But a3 and o«

are in 0(F). Hence, aiE&(V). Similar computations show that the

remaining at lie in Í2(F) and the theorem is proved.
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