ON EXPONENTIALLY CLOSED FIELDS!
NORMAN L. ALLING

It is well known [4] that the non-Archimedean residue class fields
K of the ring of continuous real valued functions on a space are real-
closed and n-sets. It does not appear to be known that the exponen-
tial function in the reals induces an exponential function in K (defini-
tions to follow); thus K is exponentially closed. The property of be-
ing exponentially closed is a new invariant which will be applied to
totally ordered fields in this paper.

A totally ordered field K will be called exponentially closed if (i) there
exists an order preserving isomorphism f of the additive group of K
onto K+, the multiplicative group of positive elements of K, and (ii)
there exists a positive integer # such that 1+1/7 <f(1) <#; such an
isomorphism will be called an exponential function in K.

In §0 Archimedean exponentially closed fields will be considered,
the rest of the paper being devoted to the non-Archimedean case. In
§1 some necessary conditions for a non-Archimedean field to be
exponentially closed will be given, followed in §2 by some examples.
In §3 a set of sufficient conditions will be given, followed by an
example.

A totally ordered field K will be called root-closed if K+t is divisible,
Clearly exponentially closed fields and real-closed fields are root-
closed.

0. An Archimedean totally ordered field is isomorphic to a unique
subfield of the reals. Let K be an exponentially closed subfield of the
reals and let f be an exponential function in K. If a=f(1) then
f(x) =a*for all x€ K. Conversely, if e€K, a> 1, and if g(x) is defined
to be a® for all x€K, then g is an exponential function in K. Thus,
any subfield of the reals is contained in a unique exponentially closed
subfield of the reals, both having the same cardinality. The field of
real algebraic numbers is, by definition, real-closed. However 22" s
not in it, hence it is not exponentially closed. It is not known to the
author if exponentially closed fields need be real-closed.

1. Necessary conditions. Let K be a non-Archimedean field. It is
well known [3] that one can associate with K a totally ordered group
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G and a homomorphism V of the multiplicative group of K onto G
satisfying the following conditions: (1) V is order preserving on K+,
(2) V(axb)=max (V(a), V(b)) (V(0) being the symbol —wx treated
in the usual way), and (3) V(a) = V(b) if and only if there exists a
positive integer 7 such that |a| <#|b| and || <#|a|. The mapping
V will be called a natural valuation on K; clearly any two such map-
pings are essentially identical. The wvaluation ring of V is
O={a€K: V(a) <0} and its maximal ideal P={aEK: V(a) <0}.
Clearly the residue class field of K, O/P =k, is an Archimedean field.

Assume, in addition, that K is exponentially closed and that fis an
exponential function in K.

LeMmMA 1.1, The restriction of f to O maps O onto the group of positive
units of O. Further, a€ P if and only if f(a) —1EP.

Proor. Since f(1) <%, f maps O into the positive units of O. Let
a be a positive unit of O. There exists mE N, the set of positive
integers, such that 1/m <a<m. Let b=F"1(a). It suffices to show that
b€O0. There exists 1N such that (14+1/%)>m. Thus f(z) =f(1)*
>(14+1/n)i>m>f(b),and>b.Sincel +1/n <f(1),f(—1) <n/(n+1).
Since n/(n+1) <1 there exists tEN such that (n/(n+1))!<1/m.
Thus f(—¢t)=f(—1)!*<(n/(n+1))!<1/m<f(b) and —t<b, proving
that b€ 0 and hence the first assertion is proved.

Let % be the canonical homomorphism of O onto k. Clearly r=hf
is an order preserving homomorphism of O onto the multiplicative
group of positive units of k. Clearly ¢ €P if and only if —1<ma <1
for all integers m. By condition (ii), 1+1/#<r(1) Snand 1/n<r(—1)
=<n/(n+1). Hence a is in P if and only if 1/2=<(r(a))™<n for all
integers m: i.e., r(a)=1 or equivalently f(a) —1EP, proving the
lemma.

The following theorem is an immediate consequence of this lemma.

TueoreM 1.2. The residue class field of a non-Archimedean ex-
ponentially closed field is an Archimedean exponentially closed field.

The restriction of ¥V to K+ is an order preserving homomorphism
onto G whose kernel is the group of positive units of O; thus Vfis an
order preserving homomorphism of the additive group of K onto G
whose kernel is O, proving the following theorem.

TueoreM 1.3. If K is a non-Archimedean exponentially closed field
whose valuation ring is O and whose value group is G then there exists
an order preserving group isomorphism that sends K /O onto G.

It is well known [3] that given a totally ordered Abelian group G
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there exists a mapping W of G onto a totally ordered set that has all
the properties of V, except that of being a homomorphism. Such a
mapping, characterized by these properties, will be called a natural
valuation on G. Let Gt be the set of positive elements of G. Then
S=W(G*) will be called the wvalue set of G. For s&S let G,
={gCG: W(g) és}/{gGG: W(g) <s}. Clearly G,, which will be re-
ferred to as the factor of G associated with s, is an Archimedean group.

COROLLARY 1.4. Assume that K is a non-Archimedean exponentially
closed field. Let G be the value group of K and k the residue class field of
K. Then Gt is isomorphic as an ordered set to W(G*) and the factors of
G are isomorphic to k.

Proor. By Theorem 1.3, K/O and G are isomorphic; thus they have
isomorphic value sets. The value set of K/O under the natural valua-
tion induced by V is G*, proving the first assertion. Let g&G*+. The
factor of K/O associated with g is isomorphic to the factor K, of K
associated with g. Let ¢ ©K such that V(a)=g. Then K,=0a/Pa,
which is isomorphic to O/P =k, proving the corollary.

2. Examples. Under pointwise operations, the set C(X) of all con-
tinuous functions from a completely regular Hausdorff space into the
reals is a lattice-ordered ring. If e € C(X) then e*© C(X); further, a
and e*—1 have the same zeros and hence [4] belong to the same
maximal ideals. Let K be a non-Archimedean residue class field of
C(X) [4] and let & be the associated canonical homomorphism. For
a'EK let a€h~'(a’), and let f(a’) =h(e®). Since a’ =0 if and only if
h(e*—1)=0, f is a well defined isomorphism of K into K*. Since &
and a—e® are order preserving, so then is f. For ¢’ 21 we may choose
a=1. Let b=log a and let &' =h(d). Clearly f(b')=a’. For 0<a’<1
we may apply the argument above to 1/a’; thus K is exponentially
closed.?

It is well known [4] that such fields are real-closed, have the reals
as their residue class field and are #;-sets in the sense of the following
definition. Let o be an ordinal number and let T be a totally ordered
set. T is called an n,-set if, given subsets 4 and B of T of power less
than R, such that 4 < B, then there exists t&€ T such that 4 < {t} <B.

It has been shown [2] that if >0, N, is a regular cardinal number,
and Zka 2% <N, then a real-closed field exists that is an 7,-set of
power N.. Let K be such a field. Clearly K is non-Archimedean. Let
fo(n) =27 for all integers n. Both the additive group of K and the

2 According to Henriksen, this argument can be used to show that the residue class
fields of uniformly closed phi-algebras are exponentially closed.
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multiplicative group of positive elements of K are totally ordered
Abelian divisible groups that are 7,-sets of power 8,. Thus by Theo-
rem B [1] f, extends to an exponential function in K, proving that
K is exponentially closed.

Let k& be an Archimedean field and let T be a nonempty totally
ordered set. For a kT let s(a) = {tCT: a(t)#O}. A subset of T is
called anti-wellordered if every nonempty subset of it has a greatest
element. Let k{ T'} be defined to be {a € k”: s(a) is anti-wellordered } .
Clearly k{T} is an Abelian group under pointwise addition. For
a€k{T}, a0, let d(a) be the greatest element in s(a). Define a>0
if a(d(a))>0; then k{ T} is a totally ordered group, d is a natural
valuation and T is its value set.

For an ordinal number a let k{ T} .= {a€k{ T} : the cardinal num-
ber of s(a) is less than W,}. Clearly k{T}. is a subgroup of k{T}.
Let G be a nonzero totally ordered Abelian group. For a, bEk{G}
let (ab)(g) = D .cq a(x)b(g—x). It is well known [5] that, under this
multiplication, #{G} is a totally ordered field. Let a be a nonzero
ordinal number; then k{G}. is a subfield of k{G}. Further, d re-
stricted to k{G}, is a natural valuation of k{G}., its value group
being G and its residue class field k.

Let G be a totally ordered Abelian divisible group that is an 7;-set
of power 8; and let K=R{G}. It was shown in [2] that K is a real-
closed field that is an #;-set and has as its residue class field the reals;
thus K might be conjectured to be isomorphic to a residue class field
of C(X) for some X. However K /O is isomorphic to R{G*} which is
of power 281, whereas G is of power N;; thus, by Theorem 1.3, K is

not exponentially closed and hence not isomorphic to any residue class
field of C(X) for any space X.

3. Sufficient conditions. Let £ be an Archimedean field, o a non-
zero ordinal, G a nonzero totally ordered Abelian group, and let
K =Fk{G}.. The valuation ideal of K is k{G~}, G~ being the set of
all negative elements of G. It has been shown [5] that given a nonzero
element ¢ of P then the semigroup ws(q)(=U,en ns(g)) of G is anti-
wellordered, and further given g in it there exists mE& N such that
gEU™. ns(q). Thus given a sequence (@u)nen in k, r= 2 mo1 @™ is a
well defined element of P. Further, given bCK, rb= D =, anq"b.

For gEP let expg= ) mog/n! and let log1l+gq
= D mu1 (=1)»"g*/n. By direct calculation it is seen that for all
g, *EP, exp q exp r=exp ¢+r. From analysis we know that

o (=1 X oe_ x™/mY)*/n converges for all real x such that
|x| <log 2; and further that the sum of this series, since it is the ex-
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pansion of log e, is x. Hence the coefficients of this series are the same
as the coefficients of the power series x. Thus log exp ¢=g¢ for all
gEP, proving that exp maps P onto 14 P and is one-to-one.

Let K be a non-Archimedean field with value group G and residue
class field k. We will say that K is properly imbedded in k{G} if it is
imbedded in k{G} such that given ¢ €K, V(a) =d(e), and such that
k{G}oCK. Generalizing somewhat a well known result stated by
Conrad [3, p. 328] we get the following: if K is real-closed it can be
properly imbedded in k{G}.

THEOREM 3.1. A non-Archimedean field K with valuation ring O,
valuation ideal P, value group G and residue class field k is exponentially
closed if the following hold: (0) K is root-closed, (1) k is exponentially
closed, (2) K/O is order isomorphic to G, and (3) K may be properly
imbedded in k{G} in such a way that if g€ P then exp q and log 14¢q
EK.

PRrOOF. Let K be imbedded in k{G} such that condition (3) holds;
thus exp is an order preserving isomorphism of P onto the multipli-
cative group of 1+P. Let k=F1. Clearly the ring O is the direct sum
of k£ and P, the order on the sum being lexicographic. By condition
(1), k is exponentially closed; thus given aEk, a>1, the mapping
x—a” is an exponential in k. For y€0 let y=x+¢, x€k and ¢EP,
this decomposition being unique. Let fo(y) =a® exp ¢. Clearly f, is an
order preserving isomorphism of O onto the group of positive units
of 0. The additive group of K is the direct sum of K/O and O, the
order in the sum being lexicographic. An element % in K can be ex-
pressed uniquely as z+7y, 2EK/0 and y&EO0. By condition (2) there
exists an order preserving isomorphism ¢ of K/O onto G. Let f(u)
= (¢(2), fo(»)). The valuation V, restricted to K¥, is an order preserv-
ing homomorphism of the multiplicative group of K+ (which is divisi-
ble by condition (0)) onto G whose kernel is the group of positive
units of 0. Thus the totally ordered group K+ is the direct product of
G and the group of multiplicative units of O, the order being lexi-
cographic. Hence f becomes an exponential function of K, proving
that K is exponentially closed, proving the theorem.

Note. Conditions (0), (1) and (2) are necessary for K to be exponen-
tially closed.

Let E be an n;-set of power N, and let (x,).en be a strictly increas-
ing sequence in E. Let E,={x€E:x<x,}. Then E, is an n-set of
power N,. Let E' =U,ex E.. Since E’ has a countable cofinal sequence
it is not an n-set. Let G=R{E’'}, and let G,=R{E,}.. Then G, is
an Abelian divisible group that is an 7;-set of power 8, [2]. Further,
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G=VU,en Gn; thus G* is order isomorphic to E’ which, under the
natural valuation d, is the value set of G (cf. Corollary 1.4).

K =R{G}. s a real-closed field (hence a root-closed field) that has
the reals as its residue class field; thus K satisfies conditions (0) and
(1). K/O is isomorphic to R{G+}, which, since G+ is isomorphic to
E', is isomorphic to R{E'};: i.e., to G; thus K satisfies condition (2).
Clearly condition (3) holds. Thus, by Theorem 3.1, K is exponentially
closed. However, since K has a countable cofinal sequence it is not
an n-set.
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