ON EXPONENTIALLY CLOSED FIELDS¹

NORMAN L. ALLING

It is well known [4] that the non-Archimedean residue class fields K of the ring of continuous real valued functions on a space are realclosed and η_1 -sets. It does not appear to be known that the exponential function in the reals induces an exponential function in K (definitions to follow); thus K is exponentially closed. The property of being exponentially closed is a new invariant which will be applied to totally ordered fields in this paper.

A totally ordered field K will be called *exponentially closed* if (i) there exists an order preserving isomorphism f of the additive group of K onto K^+ , the multiplicative group of positive elements of K, and (ii) there exists a positive integer n such that 1+1/n < f(1) < n; such an isomorphism will be called an *exponential function* in K.

In §0 Archimedean exponentially closed fields will be considered, the rest of the paper being devoted to the non-Archimedean case. In §1 some necessary conditions for a non-Archimedean field to be exponentially closed will be given, followed in §2 by some examples. In §3 a set of sufficient conditions will be given, followed by an example.

A totally ordered field K will be called *root-closed* if K^+ is divisible. Clearly exponentially closed fields and real-closed fields are rootclosed.

0. An Archimedean totally ordered field is isomorphic to a unique subfield of the reals. Let K be an exponentially closed subfield of the reals and let f be an exponential function in K. If a=f(1) then $f(x)=a^x$ for all $x \in K$. Conversely, if $a \in K$, a > 1, and if g(x) is defined to be a^x for all $x \in K$, then g is an exponential function in K. Thus, any subfield of the reals is contained in a unique exponentially closed subfield of the reals, both having the same cardinality. The field of real algebraic numbers is, by definition, real-closed. However $2^{2^{1/2}}$ is not in it, hence it is not exponentially closed be real-closed.

1. Necessary conditions. Let K be a non-Archimedean field. It is well known [3] that one can associate with K a totally ordered group

Presented to the Society, April 14, 1961; received by the editors April 17, 1961 and, in revised form, July 28, 1961.

¹ This research was supported by a grant from the Office of Naval Research under Contract No. Nonr-1100 (12).

G and a homomorphism V of the multiplicative group of K onto G satisfying the following conditions: (1) V is order preserving on K^+ , (2) $V(a \pm b) \leq \max(V(a), V(b))$ (V(0) being the symbol $-\infty$ treated in the usual way), and (3) V(a) = V(b) if and only if there exists a positive integer n such that $|a| \leq n|b|$ and $|b| \leq n|a|$. The mapping V will be called a *natural valuation on* K; clearly any two such mappings are essentially identical. The valuation ring of V is $O = \{a \in K: V(a) \leq 0\}$ and its maximal ideal $P = \{a \in K: V(a) < 0\}$. Clearly the residue class field of K, O/P = k, is an Archimedean field.

Assume, in addition, that K is exponentially closed and that f is an exponential function in K.

LEMMA 1.1. The restriction of f to O maps O onto the group of positive units of O. Further, $a \in P$ if and only if $f(a) - 1 \in P$.

PROOF. Since f(1) < n, f maps O into the positive units of O. Let a be a positive unit of O. There exists $m \in N$, the set of positive integers, such that 1/m < a < m. Let $b = f^{-1}(a)$. It suffices to show that $b \in O$. There exists $i \in N$ such that $(1+1/n)^i > m$. Thus $f(i) = f(1)^i > (1+1/n)^i > m > f(b)$, and i > b. Since 1+1/n < f(1), f(-1) < n/(n+1). Since n/(n+1) < 1 there exists $t \in N$ such that $(n/(n+1))^i < 1/m$. Thus $f(-t) = f(-1)^i < (n/(n+1))^i < 1/m < f(b)$ and -t < b, proving that $b \in O$ and hence the first assertion is proved.

Let *h* be the canonical homomorphism of *O* onto *k*. Clearly r = hf is an order preserving homomorphism of *O* onto the multiplicative group of positive units of *k*. Clearly $a \in P$ if and only if -1 < ma < 1 for all integers *m*. By condition (ii), $1+1/n \le r(1) \le n$ and $1/n \le r(-1) \le n/(n+1)$. Hence *a* is in *P* if and only if $1/n \le (r(a))^m \le n$ for all integers *m*: i.e., r(a) = 1 or equivalently $f(a) - 1 \in P$, proving the lemma.

The following theorem is an immediate consequence of this lemma.

THEOREM 1.2. The residue class field of a non-Archimedean exponentially closed field is an Archimedean exponentially closed field.

The restriction of V to K^+ is an order preserving homomorphism onto G whose kernel is the group of positive units of O; thus Vf is an order preserving homomorphism of the additive group of K onto G whose kernel is O, proving the following theorem.

THEOREM 1.3. If K is a non-Archimedean exponentially closed field whose valuation ring is O and whose value group is G then there exists an order preserving group isomorphism that sends K/O onto G.

It is well known [3] that given a totally ordered Abelian group G

there exists a mapping W of G onto a totally ordered set that has all the properties of V, except that of being a homomorphism. Such a mapping, characterized by these properties, will be called a *natural* valuation on G. Let G^+ be the set of positive elements of G. Then $S = W(G^+)$ will be called the value set of G. For $s \in S$ let G_s $= \{g \in G: W(g) \leq s\} / \{g \in G: W(g) < s\}$. Clearly G_s , which will be referred to as the factor of G associated with s, is an Archimedean group.

COROLLARY 1.4. Assume that K is a non-Archimedean exponentially closed field. Let G be the value group of K and k the residue class field of K. Then G^+ is isomorphic as an ordered set to $W(G^+)$ and the factors of G are isomorphic to k.

PROOF. By Theorem 1.3, K/O and G are isomorphic; thus they have isomorphic value sets. The value set of K/O under the natural valuation induced by V is G^+ , proving the first assertion. Let $g \in G^+$. The factor of K/O associated with g is isomorphic to the factor K_g of Kassociated with g. Let $a \in K$ such that V(a) = g. Then $K_g = Oa/Pa$, which is isomorphic to O/P = k, proving the corollary.

2. Examples. Under pointwise operations, the set C(X) of all continuous functions from a completely regular Hausdorff space into the reals is a lattice-ordered ring. If $a \in C(X)$ then $e^a \in C(X)$; further, a and $e^a - 1$ have the same zeros and hence [4] belong to the same maximal ideals. Let K be a non-Archimedean residue class field of C(X) [4] and let h be the associated canonical homomorphism. For $a' \in K$ let $a \in h^{-1}(a')$, and let $f(a') = h(e^a)$. Since a' = 0 if and only if $h(e^a - 1) = 0$, f is a well defined isomorphism of K into K^+ . Since h and $a \rightarrow e^a$ are order preserving, so then is f. For $a' \ge 1$ we may choose $a \ge 1$. Let $b = \log a$ and let b' = h(b). Clearly f(b') = a'. For 0 < a' < 1 we may apply the argument above to 1/a'; thus K is exponentially closed.²

It is well known [4] that such fields are real-closed, have the reals as their residue class field and are η_1 -sets in the sense of the following definition. Let α be an ordinal number and let T be a totally ordered set. T is called an η_{α} -set if, given subsets A and B of T of power less than \aleph_{α} such that A < B, then there exists $t \in T$ such that $A < \{t\} < B$.

It has been shown [2] that if $\alpha > 0$, \aleph_{α} is a regular cardinal number, and $\sum_{\delta < \alpha} 2^{\aleph_{\delta}} \leq \aleph_{\alpha}$, then a real-closed field exists that is an η_{α} -set of power \aleph_{α} . Let K be such a field. Clearly K is non-Archimedean. Let $f_0(n) = 2^n$ for all integers n. Both the additive group of K and the

² According to Henriksen, this argument can be used to show that the residue class fields of uniformly closed phi-algebras are exponentially closed.

multiplicative group of positive elements of K are totally ordered Abelian divisible groups that are η_{α} -sets of power \aleph_{α} . Thus by Theorem B [1] f_0 extends to an exponential function in K, proving that K is exponentially closed.

Let k be an Archimedean field and let T be a nonempty totally ordered set. For $a \in k^T$ let $s(a) = \{t \in T : a(t) \neq 0\}$. A subset of T is called *anti-wellordered* if every nonempty subset of it has a greatest element. Let $k\{T\}$ be defined to be $\{a \in k^T : s(a) \text{ is anti-wellordered}\}$. Clearly $k\{T\}$ is an Abelian group under pointwise addition. For $a \in k\{T\}$, $a \neq 0$, let d(a) be the greatest element in s(a). Define a > 0if a(d(a)) > 0; then $k\{T\}$ is a totally ordered group, d is a natural valuation and T is its value set.

For an ordinal number α let $k\{T\}_{\alpha} = \{a \in k\{T\} :$ the cardinal number of s(a) is less than $\aleph_{\alpha}\}$. Clearly $k\{T\}_{\alpha}$ is a subgroup of $k\{T\}$. Let G be a nonzero totally ordered Abelian group. For $a, b \in k\{G\}$ let $(ab)(g) = \sum_{x \in G} a(x)b(g-x)$. It is well known [5] that, under this multiplication, $k\{G\}$ is a totally ordered field. Let α be a nonzero ordinal number; then $k\{G\}_{\alpha}$ is a subfield of $k\{G\}_{\alpha}$. Further, d restricted to $k\{G\}_{\alpha}$ is a natural valuation of $k\{G\}_{\alpha}$, its value group being G and its residue class field k.

Let G be a totally ordered Abelian divisible group that is an η_1 -set of power \aleph_1 and let $K = R\{G\}$. It was shown in [2] that K is a realclosed field that is an η_1 -set and has as its residue class field the reals; thus K might be conjectured to be isomorphic to a residue class field of C(X) for some X. However K/O is isomorphic to $R\{G^+\}$ which is of power 2^{\aleph_1} , whereas G is of power \aleph_1 ; thus, by Theorem 1.3, K is not exponentially closed and hence not isomorphic to any residue class field of C(X) for any space X.

3. Sufficient conditions. Let k be an Archimedean field, α a nonzero ordinal, G a nonzero totally ordered Abelian group, and let $K = k\{G\}_{\alpha}$. The valuation ideal of K is $k\{G^-\}$, G^- being the set of all negative elements of G. It has been shown [5] that given a nonzero element q of P then the semigroup $\omega s(q)(=\bigcup_{n \in N} ns(q))$ of G is antiwellordered, and further given g in it there exists $m \in N$ such that $g \in \bigcup_{n=1}^{m} ns(q)$. Thus given a sequence $(a_n)_{n \in N}$ in $k, r = \sum_{n=1}^{\infty} a_n q^n$ is a well defined element of P. Further, given $b \in K, rb = \sum_{n=1}^{\infty} a_n q^n b$.

For $q \in P$ let $\exp q = \sum_{n=0}^{\infty} q^n/n!$ and let $\log 1 + q = \sum_{n=1}^{\infty} (-1)^{n-1}q^n/n$. By direct calculation it is seen that for all $q, r \in P$, $\exp q \exp r = \exp q + r$. From analysis we know that $\sum_{n=1}^{\infty} (-1)^{n-1} (\sum_{m=1}^{\infty} x^m/m!)^n/n$ converges for all real x such that $|x| < \log 2$; and further that the sum of this series, since it is the ex-

1962]

pansion of log e^x , is x. Hence the coefficients of this series are the same as the coefficients of the power series x. Thus log exp q=q for all $q \in P$, proving that exp maps P onto 1+P and is one-to-one.

Let K be a non-Archimedean field with value group G and residue class field k. We will say that K is properly imbedded in $k\{G\}$ if it is imbedded in $k\{G\}$ such that given $a \in K$, V(a) = d(a), and such that $k\{G\}_0 \subset K$. Generalizing somewhat a well known result stated by Conrad [3, p. 328] we get the following: if K is real-closed it can be properly imbedded in $k\{G\}$.

THEOREM 3.1. A non-Archimedean field K with valuation ring O, valuation ideal P, value group G and residue class field k is exponentially closed if the following hold: (0) K is root-closed, (1) k is exponentially closed, (2) K/O is order isomorphic to G, and (3) K may be properly imbedded in $k\{G\}$ in such a way that if $q \in P$ then exp q and log $1+q \in K$.

PROOF. Let K be imbedded in $k\{G\}$ such that condition (3) holds; thus exp is an order preserving isomorphism of P onto the multiplicative group of 1+P. Let $\hat{k} = k1$. Clearly the ring O is the direct sum of \bar{k} and P, the order on the sum being lexicographic. By condition (1), k is exponentially closed; thus given $a \in k$, a > 1, the mapping $x \rightarrow a^x$ is an exponential in k. For $y \in O$ let y = x + q, $x \in k$ and $q \in P$, this decomposition being unique. Let $f_0(y) = a^x \exp q$. Clearly f_0 is an order preserving isomorphism of O onto the group of positive units of O. The additive group of K is the direct sum of K/O and O, the order in the sum being lexicographic. An element u in K can be expressed uniquely as z+y, $z \in K/O$ and $y \in O$. By condition (2) there exists an order preserving isomorphism t of K/O onto G. Let f(u) $=(t(z), f_0(y))$. The valuation V, restricted to K⁺, is an order preserving homomorphism of the multiplicative group of K^+ (which is divisible by condition (0)) onto G whose kernel is the group of positive units of O. Thus the totally ordered group K^+ is the direct product of G and the group of multiplicative units of O, the order being lexicographic. Hence f becomes an exponential function of K, proving that K is exponentially closed, proving the theorem.

Note. Conditions (0), (1) and (2) are necessary for K to be exponentially closed.

Let *E* be an η_1 -set of power \aleph_1 and let $(x_n)_{n \in N}$ be a strictly increasing sequence in *E*. Let $E_n = \{x \in E : x < x_n\}$. Then E_n is an η_1 -set of power \aleph_1 . Let $E' = \bigcup_{n \in N} E_n$. Since *E'* has a countable cofinal sequence it is not an η_1 -set. Let $G = R\{E'\}_1$ and let $G_n = R\{E_n\}_1$. Then G_n is an Abelian divisible group that is an η_1 -set of power \aleph_1 [2]. Further,

 $G = \bigcup_{n \in N} G_n$; thus G^+ is order isomorphic to E' which, under the natural valuation d, is the value set of G (cf. Corollary 1.4).

 $K = R\{G\}_1$ is a real-closed field (hence a root-closed field) that has the reals as its residue class field; thus K satisfies conditions (0) and (1). K/O is isomorphic to $R\{G^+\}_1$ which, since G^+ is isomorphic to E', is isomorphic to $R\{E'\}_1$: i.e., to G; thus K satisfies condition (2). Clearly condition (3) holds. Thus, by Theorem 3.1, K is exponentially closed. However, since K has a countable cofinal sequence it is not an η_1 -set.

BIBLIOGRAPHY

1. N. L. Alling, On ordered divisible groups, Trans. Amer. Math Soc. 94 (1960), 498-514.

2. — , A characterization of Abelian η_{α} -groups in terms of their natural valuation, Proc. Nat. Acad. Sci. 47 (1961), 711–713.

3. P. Conrad, On ordered division rings, Proc. Amer. Math. Soc. 5 (1954), 323-328.

4. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960.

5. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252.

6. O. F. G. Schilling, *The theory of valuations*, Math. Surveys, No. 4, Amer. Math. Soc., New York, 1950.

PURDUE UNIVERSITY