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Introduction and summary. Let i be an »X» matrix whose ele-

ments are continuous functions of the real variable t. Consider the

system

(1, Y-AY       (.-¿)

where Y is the unknown »X« matrix. We show that, without loss of

generality, A may be assumed to be either symmetric iA' = A,

A'= transpose of A) or skew symmetric 04'= —A), since (1) can be

replaced by two systems in which one matrix is symmetric and the

other skew symmetric.

We shall be concerned with the question of periodic solutions of a

particular system of the type

Y = 27

where 2 is skew symmetric and periodic with period co. If S is also odd,

(2(i) = — 2( — t)), Demidovic [l] has shown that Y will be periodic.

We give below a simple proof of this result, in which moreover the

hypothesis that the matrix be skew symmetric is dropped. If 2 is

not odd, nothing beyond the Floquet theory is known about the peri-

odicity of Y.
When S is a 3X3 matrix we shall use a theorem in differential

geometry, which is due to Fenchel [2], to obtain a necessary condi-

tion on the elements of 2, in order that Y be periodic with period co.

Results and proofs. We shall denote the unit matrix by /. We have :

Theorem 1. The solution of Y = AY, 7(0) = / with A arbitrary is

determined when we have the solutions of

1
0 = 2-0;        0(0)=/,    2= — iA-A')

and
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Í A + A'\z = sz;     z(0) = i,   s = e'l-je

and is in fact Y= QZ. (We note that 2 is skew symmetric and that S is

symmetric and depends on 0, the solution of 0 = SO.)

Proof. The proof follows from a simple calculation and from the

obvious fact that 6 must be orthogonal.

Demidovic has shown that if 2 is skew symmetric, odd (2(i)

= —2( —/)) and periodic with period co, then all solutions of F = 2F

are periodic with either period co or 2co. We give below a simpler proof

of this result, dropping the hypothesis of skew symmetry. In addition

we prove all solutions have period co.

Theorem 2.7/2 is odd and periodic with period co then all solutions

of Z = '2Z are periodic with period w.

Proof. The solution Z = 2Z; Z(0) = I is unique. Let Z(-t) = H(t).
We have

dH
-= - Z(-t) = - 2(-t)Z(-t) = 2(t)H(t).
dt

Since Z(t) and H(t) satisfy the same equation and since moreover

Z(0)=H(0) = I we have by the uniqueness of the solution that

Z( — t)—H(t)=Z(t). If we consider now the matrix Z(/+co) we see

that it satisfies our differential equation equation and we obtain

Z(t-\-w)=Z(t)F where F is a constant matrix (Floquet's theory). If

we now let t= — co/2 in the last equation we get F=I, since Z(—t)

= Z(t) and Z(t) is nonsingular. Hence Z(t-\-u>) =Z(t) which completes

the proof.

We return now to the equation Y— AY; Y(0) = I in which we re-

strict A to be a 3 X 3 skew symmetric matrix which in addition is con-

tinuous and periodic with real period co.

/     0 a(t)    ¿>(/)\

(2) A(t) = l -a(t)        0       c(t) j

\-b(t)    -c(t)      0  /

where a(t), b(t), c(t) are real periodic functions of t with common

period co. We have :

Lemma 1. Let A be given by (2). Consider the system Y = AY. There

exists a constant orthogonal matrix 0 such that, in the skew symmetric

matrix

Q'AG = A
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the element ä corresponding to ait) in A satisfies the relation

M(5(0) = 0

where, for any function fit),

ßif) = - ffiOdt.
03 J a

Proof. If pia) = 0, take 0 = 7. Otherwise, choose 0 so that its third

column is orthogonal to the vector with the components,

m(c),       -pib),       pia).

The rest follows from a straightforward computation.

If we introduce Y = O Y as the unknown matrix, it satisfies the

differential equation

? = Ä?.

Therefore, we may assume that ait) in (1) has already the property

pia) = 0, since Y will have periodic elements if and only if the same

is true for Y.

Lemma 1 provides the possibility for reduction of the system

Y=A Y. We have:

Lemma 2. If the matrix Ait) defined by (1) has the property that

A it+u) =Ait) and pia) = 0, then the system

Y = AY,        F(0) = /

has a periodic solution Y of period cu if and only if the system

(3) Û = BU,        <7(0) = /

has a periodic solution U of period a, where

I    0,      0,     /3>

(4) Bit) = f     0,      0,     y

V-/3,    -y,   0/

and

(5) ßit) = b cos a — c sin a,

(6) 7(0 = b sin a + c cos a,

(7) a(f) =  f ais)ds.
J 0

Obviously, 5(i+w) = B(i) since
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a(t + co) = a(t) + p(a) = a(t).

Proof. Let 6 be defined by

(cos a   sin a   0 \

— sin a   cos a   0 J

0        01/

and put

(9) F = eu.

Then F = A Y implies

(10) U = erl(A6 -Q)U

and a simple calculation shows that (10) is identical with (3).

Obviously, the system (3) with the matrix (4) is nothing but the

Frenet-Serret formulas of differential geometry with curvature ß and

torsion y. In obtaining information about the periodicity of U we

shall use certain results from differential geometry.

If U is periodic with period co then regarding / as arc length we see

that from Z to Z+co along a curve in 3 space the curvature, torsion,

tangent, normal and binormal are periodic. We now consider the

spherical indicatrix of the tangents to this curve. For this purpose we

assume that ß(t)>0 and that ß(t) and y(t) are differentiable. A cal-

culation shows us that the curvature ßi and torsion yi of our spherical

indicatrix are given respectively by

2     ß2 + y2 ßy'-ß'y (.       <T
?i = —-   and   Yi =-

ß2 ß(ß2 + y2) \    "   dt)

and that the arc lengths are connected by dh/dt = ß(t) where h is the

arc length of the spherical indicatrix. Now there is a result due to

Fenchel [2] concerning the integral curvature of a curve which states

that the integral curvature, /| k\ ds, of a closed space curve is equal to

or greater than 2ir. Here i is the arc length of the curve and the limits

of integration are the length of the curve. If our U is to be periodic

the spherical indicatrix of the tangents is a closed curve. Hence we

have:

A necessary condition that U given by Ù — B U, where B is given by

(4) and where ß and y are real, differentiable, periodic functions of t

with period co and where j3(/)>0, be periodic is that f%(ß2+y2yi2dt
^2tt.

It should be remarked that we do not get additional inequalities

if we consider the spherical indicatrix of the normals or binormals or
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for that matter if we consider the spherical indicatrices of the spheri-

cal indicatrices.

We close by stating the above results in terms of the matrix A

given by equation (2).

Theorem 3. A necessary condition that the solution of Y = AY,

7(0) = I, should be periodic with period œ where A is given by (2) and

where ait), bit), c(i) be periodic with period w and satisfy

b cos I   o({)¿{ - c sin J   a(£)¿£ > 0
Jo •'0

is that

/.
ib2 + c2yi2dfziT.

0
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