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1. Introduction. Let i be a simple, flexible, powerassociative,

finite-dimensional algebra over a field of characteristic zero. Then it is

known that A has a unity element 1 [5], and consequently A has a

degree. When A has degree larger than two, Oehmke has shown [5]

that A+ is a simple Jordan algebra. Kokoris [4] has shown the same

result in case A has degree two. In this paper we are able to show

that if A has degree one then in fact A must be a one-dimensional

algebra. Combining these results, the following theorem may be

asserted.

Main Theorem. 7/ .¡4 is a simple, flexible, powerassociative, finite-

dimensional algebra of characteristic zero then A+ is a simple Jordan

algebra.

2. Proof. We begin with a result that is more general than actually

needed to prove the main theorem.

Theorem 1. Let R be a flexible algebra with unity element 1 over a

field F of characteristic not two. Suppose there exists some vector space

decomposition of 72, 72= Fl-\-N, such that for all elements a, bin N

a-b= (ab-t-ba)/2 is in N. Then the ideal C generated by all elements of

the form (x, y, z) = (x-y)-z — x-(y-z) is contained in N and hence is a

proper ideal of 72.

Proof. For arbitrary elements Xi, x2, y in TV we have xry = Xil+zi,

and x2y = X2l+Z2, where zi and Zi are in N, while Xi, X2 are scalars. As

in Schäfer [7, Relation (8)] it follows from the flexible law that

(xi-x2)y = Aix2 + A2X1 + xi-z2 + x2-2i — (xi-y)-Xi — (x2-y)-Xi

+ (xi-Xi)-y.

As in Kokoris [3, p. 653] one goes on to show from (1) that

(xi, Xi, x3)y = (xu x2, z3) + (xu Zi, x3) + (zlf x2, x3) — (xry, x2,x3)

— (xi, x2-y, x3) + (x3-y, x2, xx) + (xu x2, x3)-y,

where (x, y, z) is defined here as (x, y, z) = (x-y)-z — x-(y-x), while

x3y=X3l+Z3, where z3 is in N and X3 is a scalar. Then if B is the sub-

space generated by all (x, y, z), relation (2) implies that BNQB
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+B-N, NBCB+B-N, and more generally ((BN) ■ ■ ■ )NCB

+B-N+ ■ ■ ■ +((B-N) ■ ■ ■ )-N etc. As a result the set C, defined

as the set of all finite sums of elements from the sets B, B-N,

(B-N)-N, ■ ■ • , can be shown to be an ideal of A. Since B is readily

shown to be in A7 and since N-NCN by hypothesis, we may conclude

that CCA7. This concludes the proof of the theorem.

Corollary. // R is also assumed to be simple then R+ is an associa-

tive, commutative algebra.

While the following theorem is not essential to the proof of the

Main Theorem, it together with Theorem 1 might be useful in a study

of flexible algebras where the elements of A7 are not necessarily nil-

potent.

Theorem 2. If S is a flexible ring of characteristic different from two

such that S+ is power associative, then S must be powerassociative.

Proof. From the flexible law third-power associativity follows.

Assume inductively ¿-power associativity for all k<n. We proceed to

establish w-power associativity. The flexible law implies that

x"_1x = (xxn_2)x = x(xn~2x) = xx"-1.

By a second induction suppose x"-ax° = x0x"-° for 0<a<w —1. We

have already established this for a = \. The linearized form of the

flexible law implies that

(xn-a~1x)xa + (xax)xn~a-1 = xn-"-1(xxa) + x°(xxn-<1-1).

By the second induction hypothesis the first term on the left cancels

the second term on the right in the last equality, leaving

vn— (a-f-1)..(a-H)   —   v(a+l) vn— (o+l)

This completes the proof of the second induction. Powerassociativity

in A+ implies

(Xa ■ x"-"-1) • x = Xa ■ (x"-"-1 ■ x).

However from this it follows that

2xn_1-x = 2xn~a-xa,

so that, for all a, xn_1 • x = x"~a ■ x", assuming characteristic different

from two. This completes the first induction and the proof of the

theorem.

We note that in general powerassociativity of T+ does not suffice to

guarantee powerassociativity of T.
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Corollary. If R is simple then R must be powerassociative.

Consider now the case at hand, in which A is assumed to have de-

gree one over an algebraically closed field. Then there exists a vector

space decomposition A =F\-\-N, where in fact all elements of A7 are

nilpotent. Albert [2, p. 527] has shown that in A+, A7 is a subalgebra.

From this one infers that A satisfies the hypotheses of Theorem 1.

From the Corollary to Theorem 1 it follows that A+ is associative.

Hence A is a noncommutative Jordan algebra. At this point a result

of Schafer's [6, Main Theorem] may be used to conclude that A is

trace-admissible. Albert [l, Principal Theorem] has shown that a

trace-admissible algebra A is simple if and only if A+ is simple. Thus

A+ is a simple, associative, commutative, finite-dimensional algebra.

Then it is well known that A+ must be a field. Therefore A7 must be

zero. This of course means A is isomorphic to F. We have proved

Theorem 3. If A is a simple, flexible, powerassociative, finite-dimen-

sional algebra over an algebraically closed field of characteristic zero

and degree one then A is a one dimensional field.

The existence of nodal, noncommutative Jordan algebras indicates

that the conclusion of Theorem 3 is not true for fields of finite char-

acteristics [3].
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