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1. Introduction. A square matrix 77 of order h all of whose elements

are pth roots of unity is called a Hadamard matrix (H(p, h) matrix)

if HHCT = hI. It is known [4] that 77(2, h) matrices can exist only for

values h = 2 and h = 4t, where t is a positive integer. Although it has

been conjectured that 77(2, 4t) matrices exist for all positive integers

t, their existence has been established [1; 3; 4; 5; 6; 7] for only the

following values of h, where q denotes an odd prime:

(1.1) h = 2k;

(1.2) h = qk + l=0 (mod 4);

(1.3) h = hi(qk + l) where hi^2 is the order of an 77(2, h) matrix;

(1.4) h = h*(h*—\) where h* is a product of numbers of forms

(1.1) and (1.2);

(1.5) Ä=172;
(1.6) h = h*(h*-\-3) where h* and ä*+4 both are products of num-

bers of forms (1.1) and (1.2);

(1.7) h = hihi(qk + \)qk where hx^2, Ä2 = 2 are orders of 77(2, h)

matrices;

(1.8) h = hihis(s + 3) where hi^2, /t2 = 2 are orders of 77(2, h)

matrices and where 5 and s+4 both are of the form qk-\-\ ;

(1.9) h= (r + 1)2 where both r and r + 2 are prime or prime powers;

(1.10) h is a product of numbers of the forms (1.1)—(1.9).

This list is taken from [2].

This paper is concerned with H(p, h) matrices when p > 2. The main

result is the construction of H(p, 2mpk) matrices where p is a prime

and «Se are non-negative integers.

2. Elementary properties. Some easily established results concern-

ing H(p, h) matrices which will be used in the sequel are the following:

(2.1) The requirement that HHCT = hi is equivalent to the require-

ment that HCTH=hI; i.e., the orthogonality of any two rows of 77 is

equivalent to the orthogonality of any two columns of 77.

(2.2) A permutation of the rows (columns) and multiplication of

the elements of a row (column) by a fixed pth root of unity are ele-

mentary operations which leave invariant the Hadamard property.

(2.3) An H(p, h) matrix can always be reduced to the standard

form in which the initial row and column contain only the root 1.
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1 It was noted by the referee that this result is known, and may be found in

R. E. Bellman's Introduction to matrix analysis, McGraw-Hill, 1960, p. 27, problem 13.
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(2.4) If H— (hij) is an H(p, A) matrix in standard form, then

E hi = E hi = 0, i = 2,3, • ■ • ,h;
¿-i y-i

h h    c

E ¡¡a = E hi = °. j = 2,3, ■ ■ ■ , h.
t=i ¿=.i

(2.5) If iii is an iï(/>i, Ai) matrix, i72 is an H(p2, h2) matrix, A = AiA2,

and p = \.c.m.(pi, p2), then Hi®H2 is an iï(/>, A) matrix.

(2.6) If Hi is an H(pi, A) matrix, 7 is a primitive p2th root of unity,

and p = l.c.m.(pi, p2), then 7Í//1 is an H(p, A) matrix.

3. Construction of iï(p, A) matrices. Throughout the remainder of

this paper H will denote an H(p, A) matrix in standard form and y

a fixed primitive pth root of unity.

When p is a prime, the requirement (2.4) that E*-i h2j = 0 can be

written in the form Ev-o &/YJ = 0> where the k¡ are non-negative

integers satisfying Ej-o&j = A. Using 1 = — ?'Z} V. the condition

becomes E?-i (kj — ko)y> = 0, where E?=o kj = h. Since 7, 72, • • • ,
7P_1 are independent over the rational field, it is necessary that

kj = ko for j=l, 2, ■ • • , p — 1. Hence pko = h and the following result

has been established.

Theorem 3.1. When p is a prime, an H(p, A) matrix can exist only

for values h = pt, where t is a positive integer.

The necessary condition that A = 2 or A = 4i for H(2, A) matrices has

two obvious possible analogues for H(p, A) matrices when p is a prime;

namely, h = p or h = p2t and h = p or h = 2pt. Results to follow in this

section show that neither of these is necessary. The condition in the

above theorem is the most stringent that has been obtained ; and when

p is not a prime, even this is not necessary as the following immediate

consequence of (2.6) shows.

Theorem 3.2. It is possible to construct H(2p, A) matrices for p arbi-

trary and A any value described in (1.1)—(1.10).

By using (2.6) an H(p, A) matrix can be constructed from an

H(pi, A) matrix, where pi is a divisor of p. Such an H(p, A) matrix

can obviously be reduced by the elementary operations (2.2) to an

H (pi, A) matrix; and, consequently, is considered as trivial.

Now let F be the matrix defined by Py=7íí, i,j = 0, 1, • • • , p — 1.

Then E"=o^= E'-o1 7e'-*"'. When i = k, then E^1 ?«-«' = p.
Suppose ÍT+k. If (i — k, p) = l, then 7'-* is a primitive ¿>th root of
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unity and Ej=o T<i_k)/ = 0. If (i-k, p)=d where d>\, let p = pid

and i — k = iid. Then (i — k)pi = iidpi = iip = 0 (mod p), so that y{~k is

a £ith root of unity. In this case J%Z¿ «y(í-*>i = d X^-V T^-*'1^ 0. This
establishes the following theorem.

Theorem 3.3. The Vandermonde matrix V defined by vij = yii,

i,j = 0, 1, • • • , p — l, is a symmetric H(p, p) matrix.1

If p = pxp2 ■ • • pr, where the p¡ are distinct prime powers, y¡ is a

primitive pjth root of unity, and Vy the corresponding Vandermonde

matrix, then permutation matrices P and Q exist such that

V=P(Vi®Vi® • • -® Vr)Q. However, V¡ can not be so decomposed,

so it would not have been sufficient to have proven the above theorem

for p a prime.

Suppose p is odd, say p = 2q-\-1, and let n be the smallest quadratic

nonresidue of p. Denote by U that permutation matrix such that

W= VU has elements Wy — y***, i, j = 0, 1, • • • , p — l. Define the

matrix Q by g,-y = 0 for i^j and qu — yqi for i = 0, 1, • • • , p — 1. Then
C=QVQ and B = QnWQn are, by (2.2), H(p, p) matrices. Using

— 2q=l (mod p), it is easy to see that c<y=7í(í_í)' and &iy=^r*«<<-í)^

Obviously now, Ci¡ = ci+kj+k and bij — bi+kj+k for k = 0, 1, • • • , p — l,

so that C and B are cyclic matrices. Furthermore, C and B are sym-

metric matrices, and each contains at most q-\-l distinct pth roots of

unity.

Defining the product of two rows p< and v¡ of V to be that vector

obtained by multiplying (mod p) the corresponding components of

the two rows, it is noted that »,«y = t><+y, so that the rows of V form

a cyclic group with generator vi. Similarly, the columns of V, the rows

of W, and the columns of W all form cyclic groups with generators

Vi, Wi = vn, and wf = zij, respectively. From this observation it easily

follows that DkV= VTk and DnkW= WTk, where D is the matrix de-

fined by da = 0 for i7^j, and da = yl for i = 0, 1, ■ ■ ■ , p—l, and T is

the permutation matrix defined by i<+i,<=l for i = 0, 1, • • • , p — l

and ¿¿y = 0 otherwise.

Let Y= (11 • • • 1) and Z= (00 • • • 0), both of length p. Then the
&th column of B can be written in the form TkQnYT, and the &th

column of CP in the form TknQYT. It will now be easy to prove the

following construction theorem.

Theorem 3.4. When p is a prime, an H(p, 2p) matrix can be con-

structed.

The procedure will be to show that the matrix
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K-(-^
QV

\ (CP)CT

Q»wy

ßCT

is an H(p, 2p) matrix. First it is noted that CYT=(YQYT)YT and

BYT=(YQ"YT)YT. When p = 2g + l is prime, there are q quadratic

residues and q quadratic nonresidues of p. Consequently,

p— i p— i p—i
YQYT + YQ"YT = E ygi* + E Tn5i2 = 2 E T3' = 0.

»=0 »"—0 j'=0

Thus CYT+BYT = ZT. Now RRCT in block form is

f(QV)(QV)CT + (Q»W)(QnW)CT  I   (QV)(CP) + (G>IF)£\
\ (CP)cr((2F)c'r + BCT(Q"W)CT (CP)CT(CP) + BCTB I

By (2.2), QV, QnW, CP, and B are all H(p, p) matrices. Thus
(QV)(QV)CT + (QnW)(Q»W)CT = (CP)CT(CP) + BCTB = 2pIP.

Now consider (QV)(CP) + (QnW)B. Using the fact that the kth col-

umns of CP and 5 can be written as TknQYT and F^F7, respec-

tively, the kih column of (QV)(CP) + (QnW)B is then given by

QVTknQYT + QnWTkQnYT = DknQVQYT + DknQnWQnYT

= Dkn(CYT + BYT) = DknZT = ZT.

Hence, (QV)(CP) + (QnW)B and its conjugate transpose

(CP)CT(QV)CT + BCT(Q"W)CT are both 0. Thus RRCT=2pI2p and the

theorem is proven. An immediate consequence of this theorem and

(2.5) is now stated.

Theorem 3.5. When p is a prime, H(p, 2mpk) matrices can be con-

structed for any non-negative integers m^k.

All the preceding results on the construction of H(p, A) matrices

are summarized in the following theorem.

Theorem 3.6. Let p = 2k<>p^p^ ■ ■ ■ p*' be the factorization of p into

powers of distinct primes. If A0 = 0, then H(p, hi) matrices can be con-

structed for hi = 2hp1{p% • • ■ pir, where /<^0, ¿ = 0, 1, ■ • • , r; /,->0

for at least one i>0; and joè Ei-iJ»'- U ^o^O, then H(p, ht) matrices

can be constructed for hi = h2h3, where h2 is 1 or the order of any H(2, A)

matrix, and A3 is 1 or any value of hi.

4. Remarks. Let the matrix obtained from H by deleting the initial

row and column of l's be called the core of H. Let tt be a primitive

root of the prime p. Then there exists a permutation matrix P such
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that the core of P VP is the cyclic matrix whose rows are all the cyclic

permutations of (•y-'y*2 • • • 7"*"). The rows of PVP obviously form

a group. In a subsequent paper the connection between an H(p, pn)

matrix whose rows form a group and whose core is cyclic, a maximal

length linear recurring sequence with elements in GF(p), and a "rela-

tive" difference set will be shown. One consequence of this connection

is the following theorem.

Theorem 4.1. For any prime p and any positive integer n, an

H(p, pn) matrix whose rows form a group and whose core is cyclic can be

constructed.
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