
ON A THEOREM OF R. JUNGEN

M. P. SCHÜTZENBERGER

Let us recall the following elementary result in the theory of ana-

lytic functions in one variable.

Theorem (R. Jungen [7]). // a is rational and b algebraic their

Hadamard product c is algebraic; if, further, b is rational, c also is ra-

tional.

For several variables, Jungen 's proof shows that the theorem is

still true for the Bochner-Martin [2] Hadamard product. It does not

hold for the Cameron-Martin [3] and for the Haslam-Jones [ó]

Hadamard products. In this note we give a version of Jungen's theo-

rem which is valid for a restricted interpretation of the notions in-

volved when a and b are formal power series in a finite number of

noncommuting variables.

1. Notations. Let R be a fixed not necessarily commutative ring

with unit 1. For any finite set Z, F(Z) is the free monoid generated by

Z and Rp0i(Z) is the free module on F(Z) over R. An element a of

Rp0\(Z) will usually be written in the form a= E{ (a,f) 'f'-f^F(^)}

where the coefficients (a, f) are in R; RV0\(Z) is graded in the usual

manner and tt„o= E{(a> /) 'f'-f£F(Z)> deg/^w}. We identify R
with irüRVo\(Z). i?Poi(Z) is also a ring with product aa'

= T,\(a,/')(o',/") •/:/,/', f"EF(Z),f=f'f"].
It is well known (cf., e.g., [4; 3]) that these notions extend to the

ring R(Z) of the formal power series (with coefficients in R) in the

noncommuting variables zEZ; R(Z) is topologized in the same man-

ner as a ring of commutative formal power-series and aa'

= lim„,„^00 (irna)(iTn>a'). Any bER*(Z) = {aER(Z): 7r0o = 0} has a

quasi-inverse ( — è)* = limn^œ E«'<» ( — °)n'• ^ a ls invertible,

a-i=(l+o*)(iroo-1) where b= -(ir0a-1)(a—iroa)ER*(Z). We shall

say that S*CR*(Z) is rationally closed if r, r'ER, b, b'ES* imply
rb + b'r', bb', b*ES*. If this is so, the set of those elements o of R(Z)

such that a — iToaES* is a ring containing the inverses of its invertible

elements.

Definition 1. R*&t(X) is the least rationally closed subset (of

R(X)) containing X.

Now let Y— [yj] be a set of a finite number M of new variables

and RM(X^J Y) (resp. J?J,(IU Y)) the cartesian product of M copies
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of the 72-module R(X U Y) (resp. R^(X U Y)). For each

Q = (?i> • • • > ïm) Q RM(X U Y), irnq = (irngi, • • • , 7r„gra). If

qQR*M(X\JY) (i.e., if ir0g = 0) let X5 be the homomorphism of the

monoid F(X\JY) into the multiplicative monoid structure of

R(XVJY) that is induced by Xgx = x if xQX and X5yy = gy if y¿£ 7,
Since 7Tog = 0, Xg can be extended to an endomorphism of the 72-

module R(XKJY) by X,a=£{(a, f)\J:fQF(XVJY)} ; also, \qp
= (Xtfi, • • • , Xrfji) for any £<E72"(XUF).

We shall say that pQR*M(X\JY) is a proper system if (py, o-y<) =0

for all j, j'úM. Then, if qQR*M(X), \qpQR*M(X) and 7rn+iX3£

= Tn+iKTnqp for all n. Consider now the infinite sequence p(Q)=Q,

p(\) = XP(0)/>, • • • , P(m + 1) = Xp(m)p, •••. Trivially, irm'p(m')

= TTm'p(m'+m")QR*M(X) for w' = 0 and all m". If these relations

hold for m'^m, they still hold for m-\-\ because

1Tm+lp(m +   1)   =   irm+\KP(m)P   =   Trm+l\-rmP(m)P   ~   lïm+l^TmP(m+m" )P

= Xm+iXp(m+m")/> = irm+ip(m + 1 + m").

Hence, p(<*>) =limm^00 p(m) exists and it satisfies p(<*>)QR*M(X),

ir0p(cc) =0, p(<*>) =Xj,(M)/>. In fact, p(°°) is the only element to satisfy

these equations because if wop' = 0 and p'' = \P'p, any relation rmp( «> )

= irmp' implies irm+ip'= irm+&Tmp>p = Tm+iKTmpMp = Trm+ip( °°). For

this reason we call p(cc) the solution of ¿>.

Definition 2. 72*lg(X) is the least subset (of 72*(X)) that contains

every coordinate of the solution of any proper system having its

coordinates in 72*0i(XUF).

(Remark. It can easily be shown that 72*lg(X) is rationally closed

and that it contains every coordinate of the solution of any proper

system having its coordinates in 72*lg(XWF).)

Definition 3. For any

a,bQR(X),    aQb= £ {(a,f)(b,f)-f:f Q F(X)}.

2. Main result.

Property 2.1. The element a of 72*(X) belongs to 72*at(Z) if and

only if there exists a finite integer 7V^2 and a homomorphism p of

F(X) into the multiplicative monoid of RNXN (the ring of the 7VX7V

matrices with entries in 72) such that a= ^,{pfi,N-f:fQF(X)}

(abbreviated as EmA.^'/)-
Proof. (1) The condition is necessary. This is trivial if a = icia.

Hence it suffices to show that for any r, r'QR, a= Em/i,.v/ and

a'= Em'/i.jv/ one can construct suitable homomorphisms giving

ra-\-a'r', aa' and a*. This is done below, defining the homomorphisms

by their restriction to X.
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Addition. Let N" = N+N' + 2 and p"xERN"XN" defined for each

xEXhy

p"xi,i = p"xN",i = 0       for 1 ^ i g N";

p"xi,i+i = rpxi,,-   and   p"xi+it{f = px,-,w       for 1 ^ i ^ A7;

m"xi,í+jv+i = p'xi.i    and    p"xi+N+i,N" = p'xi,N'-r'        for 1 g i g A7';

p"xí,í> = the direct sum of px and /¿'x      for 2 :g i, i' ^ A7" — 1;

p"xi,N" = rpXi,N + p'xi.tf'f'.

The verification is trivial.

Product. Let A7" = Ar+iV' and define vfERN"XN" for each/GF(X)

by vfi,i'=pfi,N if/^l, lúiúN, i' = N+í; vft,t> = 0, otherwise. Then,
if p"x = fix + vx where px is the direct sum of px and p'x, one has for

each/ = x^'xW • • • *<»>,/*"/ = fif + E{mA*wp/'':/'x <>>/'' =/}.
Since   vfx<» = ßfvx<»  and   (vf"'fif")UN,. = 0  when  /" = 1,  one   has

m"/i.w» = EKm/i'^Íp'/iV) :/'/"=/}■ Hence, Em"/i.W=oo'.
Quasi-inverse. Let N" = N and define vfERNXN for each/£F(X)

by vfi,i'=pfi,N if /^l, laîaA7, t'=l; vfi,i> = 0, otherwise. Then
p"x = px + vx and since pfvx — vfx identically one has p"f

= El'/<1),'/(2) ' " ' vf°°)pf<-k+1) where the summation is over all the

factorisations /=/(1)/(2) • • -/(Ä:+1) of /in an arbitrary number of fac-

tors. The (1, N) entry of any of these products is zero unless all its

factors are different from 1 and under this condition, it is equal to

Pf§pfl% ■ ■ ■ H/ljf1'. Hence, Em"/i.W= E»>oO" = o* and the first
part of the proof is completed.

(2) The condition is sufficient. We say that the proper system p is

linear if for each j g M, pj = qj,o+ Er Qi.i'Ji' where all the q's belong

to R*&t(X) and we verify that all coordinates of the solution of such

a system belong to R*at(X).

This is trivial if M=\ because £(°°) = (1—2i,i)_1ffi,o(= (l+<Z*i)?i,o).

If it is true for M'<M it is still true for M. Indeed, because p(*>)u

= (1 — qM,M)~l(qM,o+ E¿<¡* qM,j'p(™)j'), the proper linear system p'

defined by pj = p¡ — qj.uyM + q¡,MpM for j < M and p'u

= (l-qM,M)~'i(pM — oM,MyM) is such that p(«>) = />'(*>). Since its

first M—Í coordinates do not involve y m the result follows from the

induction hypothesis.

Now, given a homomorphism p of F(X) into RMxMt the M ele-

ments aj—^2,{pfj,M-f:fEF(X), /^l} are such that (<z;-, xf)
~ Er P-Xi,ï(aïi /)• Hence (01, • • ■ , aM) is the solution of the linear

proper system such that qj.o = EiM^y.M-x: x E X\, qjtj'

~ *£L{pxi'.rx: xEX] for each/,/' and 2.1 is proved.
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We now consider two subrings 72' and 72" of 72 that commute

element-wise.

Property 2.2. If a= Em'/i.w■/£72r*t(.X') where p' is a homomor-

phism into 72/JVXJV and if b = p( œ)iQR'SL[*(X) where the proper system

p has its coordinates in R^(XUY), then a o fc£72*ig(X). If, fur-

ther, bQRïiï(X) then a O bQR*&t(X).
Proof. We verify first the case of bQR'T£(X),i.e., oib= Em"/i.jv" ■/

for some N" and p". Then a o b= E(m'®m")/i,íva"'/ where the

kroneckerian product p'®p" is a homomorphism of F(X) into

rxn"xnn" because 72' and 72" commute and the result is proved.

For the general case we denote by K(Z) for any set Z the ring of

the NXN matrices with entries in R(Z). We shall have to consider

several homomorphisms of module er: RM(Z')—>KM(Z") where Z' and

Z" are two finite sets. In each case <r is defined by a mapping

Z'—>K(Z") which is extended in a natural fashion to a homomor-

phism of the monoid F(Z') into the multiplicative structure of K(Z").

Then for each

a = (ai, ■ ■ -,aM)Q RM(Z'),    <my = E{ («A g)-<rg:gQ F(Z')\

and aa= (o~ai, ■ ■ ■ , cau).

More specifically, p: RM(X)—*KM(X) is induced by a mapping

p: X^>K(X) such that the entries of each px belong to R'*(X).

For each qQR"*M(X), \q: R(X\JY)->KM(X) is induced by \J
= pf if fQF(X) and X(15yy = MÇZy if y¡QY. Hence, since 72' and 72"
commute element-wise, pKqg = \iiqg for each gQF(X\JY) (with \q

as previously defined). Consequently, pSqp = \qp for any

PQR"M(X\JY).

Let now Z = {zy,,-,¿-} (1 új^M; l^i, i'£N), a set of MXNXN

new variables and j>: 72AÍ(XW F)-^7CAi(ArUZ) induced by vf = pf if

fQF(X), vy, = the NXN matrix with entries Zy,,-,,•' if y,QY. Also

X„3:72(XUZ)->72(X) is induced by \,J=f ii fQF(X) and X^Sy,«.,-.
= (vii)i.i' if Zj,i,i'QZ. We extend X„9 to a homomorphism KM(X\JZ)

->KM(X) by defining X„5m for any mQK(XUZ) as the NXN
matrix with entries X,,5(m¿,,<).

Because 72' and 72" commute, ~Knqg = Kqvg for each gQF(XVJY)

and, consequently, \qp=\,qvp for each ££72"*Jli(.X'UF). Hence,

if p is a proper Af-dimensional system with coordinates in R"*(XKJ Y)

wehave/x£(°°) =p^P^)p=\„P(X)p. Since p and y coincide on 72"*M(X),

we have also pp(&>) = vp(*>) =Xiip(o0)^ =KP(x)Vp.

However, the MXNXN elements p'j,i,i'—(vpj)i,i' all belong to

R*(X\JZ) and they constitute a proper system p' of dimension MN2.

Thus, by construction, (pp((X>)j)i,i'=p'(<x>)/,<,<' identically. If, fur-
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ther, pERpdM(X{JY) all the entries appearing in  vp  belong to

^i(IUZ) and then finally (pp(^)¡)i.vER*^(X).

This completes the proof because

a O b = E {(b, /V/i.* •/: / E F(X)}

= Tl{(b,f)pf.N:fEF(X)] =pbi,N

where for each xEX, p is defined by px,,¿' =p'xi,i--x.

Remark 1. Definitions 1, 2, and 3 and the computations of this

section used only the structure of monoid of the additive groups con-

sidered. Hence, the results are still valid when an arbitrary semi-

ring S is taken in place of R. For 5consisting of two Boolean elements,

Jungen's theorem and its special case for b rational have been ob-

tained in a different form by Y. Bar-Hillel, M. Perles and E. Shamir

[l] (also by S. Ginsburg and G. F. Rose [5]) and by S. Kleene [8]

respectively as by-products of more sophisticated theories.

Remark 2. Let R=C, the field of complex numbers; and p a

proper system of dimension M. Introducing 4M new symbols z¡ and

replacing each y¡ by z-iy-H'z^'+i — z^+2 — iztj+3 in the pjS we can deduce

from p a new system of dimension 4M in which all the coefficients are

non-negative real numbers and whose solution is simply related to

P(co).

Assume now that pE Cj^(XU Y) has only real non-negative coeffi-

cients and denote by a a homomorphism of Cpoi(XKJY) into C. Be-

cause of the assumption that (p¡, y,-) = (p¡, 1) = 0, identically, we

can find an e>0 such that \ctpj\ <e for all j when |ax| 5=e and

I ay I ^2e for all xEX and y£ F. Since the sequence ap(0), ap(\),

■ ■ ■ ,ap(n), ■ ■ • is monotonically increasing it converges to a finite

solution (cf., e.g., [l0]).

Hence, the canonical epimorphism of CPOi(IW7) onto the ring of

the ordinary (commutative) polynomials can be extended to an epi-

morphism of C&ie(X) onto the ring of the Taylor series of the alge-

braic functions.
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