THE G-FUNCTIONS AS UNSYMMETRICAL FOURIER
KERNELS. I

ROOP NARAIN

1. A function K(x) by means of which an arbitrary function f(x),
subject to appropriate conditions, is capable of being represented
as a repeated integral

(1.1) @) = f " K (ux) f " K(u)f)dy du

has been called a Fourier kernel by Hardy and Titchmarsh [1,
p. 116]. The relations (1.1) is usually written as a pair of reciprocal
integral equations

12) g = f K@)y, f) = f "K(ey)s0)dy.

(1.1) is a symmetrical formula. There are also formulae of the type

(1.3) 1) = f " K (us) f " Hus)f(3)dy du

in which the kernels in the two integrals are different functions. This
relation may also be written as a pair of unsymmetrical integral equa-
tions

g(x) = fo QH(xy)f(y)dy,

) = f " K()g0)ds.

A simple example of the formula (1.3) is that in which
K(x) = 2'?Y,(x) and H(x) = z'2H,(x),

where V,(x) denotes the Bessel function of the first kind and H,(x)
the Struve’s function [4, p. 64 and p. 328].

The functions K(x) and H(x) have been referred to as a pair of
unsymmetrical Fourier kernels by various authors. The object of this
paper is to obtain a new pair of kernels K(x), H(x) in terms of the
most general G-function satisfying (1.3).

The G-function is a sum of hypergeometric functions each of which
is usually an entire function. It is written as on the left of (1.4) below
and defined [2, p. 207] by the integral on the right
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The poles of the integrand must be simple and those of T'(b;—5s),
j=1,2,---,m, must lie on one side of the contour L and those of
T'l—a;+s),j=1,2, -, n, must lie on the other side.

An example of a symmetrical Fourier kernel in terms of G-function
has been given by the author [3, p. 298] earlier as

1
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It was also pointed out that

ay cc ty8py —ay "_ap>

1.6 265Gy, ( i
(1.6) 8 2p,2¢\ 8 by, + v, by —by, -, —bg

and
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1.7)  2ByxV2Gy, ( Ca
(1.7) By 2,20\ B by, + -+, by —by, -, —b,

where 8 and « are real constants, are also Fourier kernels.

2. Let R(s) and 9(s) be the Mellin transforms of K(x) and H(x)
respectively, i.e.

(2.1) R(s) = fwx"lK(x)dx, H(s) = fwx“lH(x)dx

then for the validity of (1.3) f(s) and $(s) must satisfy [1, p. 118]
the functional relation

(2.2) REHOUA —5) =1,
and K(x), H(x) and f(x) must satisfy certain convergence conditions.
Consider the functions

1

m, a, o« o . ’a b o . e b
K(x) = Ax1/2Gp+1;’m+n <7 g2t » 01, ’ q)

L, -y Cmy Qay + -+ dn

and
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. 1
H(x) = BxY 2G,,.;I.,,,,..,.,. (—4- x?

By, ++ 5B al)""ap)
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where A and B are constants. The Mellin transforms of K(x) is

° m 1 al:""ambl,"'ybq
(s =Af 212G ,,(—x2 )dx
) 0 pramtnl g €l ** 3 Cm G1y v, dn

_ 2,_1/2Afwy(./2+1/4)—1(;:_"_‘;_m+n (y ay, -+, Qp, bl, e, b,,) dy,
0

€l -ty 6m G1yc vy dn

Evaluating this by a known integral [5, p. 337], we get

ﬁ Tle;+ 1/4 4+ 5/2) fI r(3/4 — a; — s/2)

R(s) = 20124 = = ,
I1rG/4 - d; — s/2) IT T(1/4 4 b5+ 5/2)
=1 J=1
— min Re(c;) < Re(s/2 4+ 1/4) < 1 — max Re(q;),
1SJSm 175D
pt+qg<m-+n.
Similarly,
n q
IIr(/4 + 8+ s/2) I T3/4 — 8; — s/2)
— J==1 Jm=1
$(s) = 2:712B — . ’
IIrG/4 = vi—s/2) II T(1/4 + @+ 5/2)
Je=1 j=1
— min Re(3;) < Re(s/2 + 1/4) < 1 — max Re(B)),
1SJSn 157=¢q
pt+g<m+ n

These satisfy the functional relation (2.2) if

I T1/4 + ¢; + s/2) TLTG/4 — a5 — 5/2)

2e-1/2 4 J=1 =1
I r@E/4 —d; —s/2) [T v(1/4 + b5+ 5/2)
j=1 je=1
IIrG/4 + 6 — s/2) II T(1/4 — 8; + 5/2)
X 21/2-sB =1 i =1,

TI (/4 — v;+ 5/2) TLTG/4 + @ — 5/2)

=1 j=1
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This relation admits of a solution if

AB =1,

e +a; =0, J=1---,p,
bj + 8 =0, Jj=1--,9
¢i+ v =0, i=1---,m,
d; +8; =0, i=1,,n

Hence we have

K(x) = Ax'/? G:;Z.,,._H, ((1/4)x2
(2.3)
H(x) = A~%Y2 Gy g min ((1/4)x2

aiy * 0,y Gy, bl)""bq
, and
1y vy my dyy - v, da

_bI) ) _bqy a1, ", —ar>

_dl, .. .’—dn’ —-cl’ o e ,-—cm

as a pair of kernel functions giving rise (formally) to the unsymmetri-
cal formula (1.3). The formulation of convergence conditions with
which the formal analysis is justifiable is a matter which will be dis-
cussed in a subsequent paper [6]. The importance of these functions
is due to their general form from which many known as well as un-
known kernels can be deduced as particular cases.

2.1. It is easy to show that if K(x) and H(x) form a pair of un-
symmetrical Fourier kernels so also are the pairs

VB K(82), V8 H(pz)
and
ya2O0-DE (x7),  yxl20-DH(x7),

where 8 and vy are real constants.
Using this we find that

28452 Gpyomin (;32:\:2

a1 0, Ay, bly"'7bq>
’

(2.4) Cly, * * * yCmy dl, .. ’d“

26471511 Gy lg,min (»8"'962

—by sy —bgy —ay, - 1_0’#)
_dl," °’_dn, —Ciy "ty —Cm

form a pair of unsymmetrical Fourier kernels and so also

a1, * " Gpy b1,'°',b¢>
’

Cly -t yCmy b1yt vt ydn

28y A% 12 G i (132x27

(2.5)
28y Ay 1/2 G:f,m.,. (ﬁ"’x"'

—by, -, —bg —ay e, —aﬂ)

—dI’ IS ’.—d", —C1, "ty =Cm
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3. Particular cases. Giving suitable values to the parameters in
(2.3), (2.4), (2.5), we can deduce as particular cases a number of
kernels determined earlier.! We give here a few examples of them.
The notations for the various transcendental functions occurring be-
low are the same as used by Watson [4, p. 789].

(a) The functions

1/2 4 v/2
1/2 + v/2,v/2, — v/2

K(x) = 21°G1s ((1/4>x= ) = x1H,(x),

and
—1/2 — »/2

20
H(x) = #°G (1 4)x?
(=) s\ 2 — 12 — 2

) = 2r

are the unsymmetrical Fourier kernels obtained by Titchmarsh [7,
p. XXXiv].

(b) Let ¢=a1—p1—p2+1/2 and let 1f; denote the hypergeometric
function defined by Fox [8, p. 401]. The functions

—ay >
=1, —p1, —p2

= a2 © - /hah

P1y P2
ay )
p1, P2, 1
Sin(m - p1)7r

= all? 3 ———————((1/2)x) o302
orea Sin(p2 — p1)T

lfz{ I=eto —(1/4)x2}

1—p2+py, 01

K(x) = 21/2(x/2)324Gy ((1/4)x2

and

Hx) = xl/z(x/2)¢—3lch§((1/4)x2

form? the special case p=1 of Fox’s Theorem 1 [8, p. 402].

1 Reference of the known cases has been indicated as far as it has been possible.
* The symbol Zp,, p» denotes that to the expression following it a similar expression
with py, py interchanged is to be added,



1962] G-FUNCTIONS AS UNSYMMETRICAL FOURIER KERNELS 955

With =1, pi=a+1, pa=v+a+1, we have
v/2 + «

K@) = x1/2013<(1/4)x2 /24 a, v/2, —v/Z)

1
= 412 r2a . 2
x!%(x/2) 1&{1_'_% ttadty (1/4)x}

and

—v/2 — a

—v/2, v/2, —v/2— a)
= x!?[Cos ar J,(x) + Sinar ¥,(x)],

H(x) = xl/i’Gig <(1/4)x2

a result due to Hardy [9, p. Ixii].
When a=0, these formulae reduce to

K(x) = H(x) = «'%],(x),

the famous Hankel's formula and when a=1/2, they reduce to the
case (a).
(c) Let ¢p=a1+0a2—p1—p2—p3+1/2. The functions

—ajy, — a2 )
=1, —p, —p3 —ps

5 -/

P15 P2y P3

ay, Q2 )
P, P2, p3 1

Sin(a; — p1)7 Sin(az — p1)w
2

K() = xl/?(x/z)m-méi((1/4)x2

ay,

= xll“’(x/Z)—d‘—‘/’zt‘a{
and

H() = xlﬂ(x/zw—mciﬁ((1/4>x2

((1/2)x)%

= x1/2(x/2)¢-3/2
P1,P2:P3 Sin(ﬁz - Pl)ﬂ' Sin(pa — p1)1r

{1—a1+P1,1—a2+p1 x2}
2f3 > ’

1—ps+p,1—pstp,p 4

form? the special case p=2 of Fox’s Theorem 1 [8, p. 402].
With au=1, ace=v+a+3/2, pr=a+1, pe=v+a+1, p3=2vr+a+1,

? The symbol Zp;, ps, ps denotes the sum of three terms in which each termisobtained
from the preceding one by cyclically interchanging p1, pz, ps.
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we have [8, p. 450]

K(3) = ia(e/2)wse-ing, {1’ rhat 32 : —<1/4)x2}
a+1,v+a+1,2v+a+1’
and

1/2

x 1/2
H(x) = — Y ((1/2)xx)

[Sin ax J2,(%/2) — 2 Sin(v + a)7 T_,(x/2)(%/2)
+ Sin(2v + a)wJ((1/2))] Cosec' vr.
(d) Take ¢=1/2+4 D 7, a,— 2 24! p,. The functions

—ay, c, —ap
b

=1, —py, - -+ —Ppn1

Ayttt Ap

Py, "y Pptly 1

form a pair of unsymmetrical Fourier kernels of which one is a hyper-

geometric function of the type ,f,.+1 while the other is a combination

of p+1 hypergeometric functions of the same type.
(e) Let p=a1+as—p1—p2—ps+1/2. The functions

—a;, —az )
_1’ —P1, P2 —P3

s Sin oo ay, ag
= xl/%(x/2)—4" 12| — d;{ i —(1/4)x?
Sin pyr p1, P2, P3

Sin(pl bl a2)7l'
Sin p1T

{{ l—pta,l—p+a xz}]
2 y ——
’ 2—pp,1—p1+ps 1 —p1+ps 4

K(x) = 21/3(a/2)4G12, ((1/4)x2

H(x) = xl'2<x/2)¢-3/261‘5?;1+'3((1/4)x2

K(x) = a'/2(x/2)¥/*Gy ((1/4)x2

2/

and

H(x) = x”’(x/Z)"‘“/’G:i((l/4)x2

ag  ayp )
p3, P2, p1, 1
=g Y _Si.n. (@1 — po)m (2/2)2or+o—312
oses Sil(ps — p2)7
2{'{ 1+P2—a1,1+p2—¢!z
14 p2—ps, 1+ p2 — py, p2

i — 1/
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form a pair of unsymmetrical Fourier kernels.
(f) The functions

K(x)=(1/4)x3/20z2<(x/4)4 _i, i, _1_, _i)
8 8 8 8
= 7~12[Cos x + Sinx + ¢~7]
and
H(x)=(1/4)x”2G§4°<(x/4)4 L3 _i>
8 8 8 8

= 7 12[Cos x + Sinx — 2]

are the special case of (2.5) with y=2 and $=2-% These unsym-
metrical Fourier kernels were obtained by Guinand [10, p. 192].

4. In this section some symmetrical Fourier kernels are mentioned
which are particular cases of (1.6) or (1.7).

(a) With y=2 and =24, the following particular cases of (1.7)
may be noted.

) (1/4)x=/2c;§i’<(x/4)4 A i)
8 8’ 8 8
= 7~1/2[¢== 4+ Cos x — Sin ]
e (L iy
8’ 8 8 8

= 7~12[¢e~* — Cos x + Sin z].

These kernels were given by Guinand [10, p. 192].
(b) With B=2-", where # is a positive integer, a special case of
(1.6) is

%2

n,0
21—nxl/2G0'2"( 2 y R 2 y 2 , 2

M1 Mn M1 Bn\
= w"l' .. "”ﬂ(x)

g2n
where @,,, . .. ,..(x) is the kernel defined by Bhatnagar [11, p. 43].
When n=2, we have

2

20f X & v I v
(1/2)x1/2GO4 <1_6 "é" '2— ) —'2_ ) _7) = w,‘,,(x),

where @, ,(x) is the kernel given by Watson [12, p. 308].
When n =1, this reduces to the Hankel's kernel x1/2J,(x).
(c) Recently Everitt [13, p. 271] has given a generalization of
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Bessel functions. The new functions, denoted by J, x(x), satisfy cer-
tain differential equations of even order, greater than two, and have
properties similar to the Bessel functions. Looking at the Mellin
transform [13, p. 275] of x/2J, x(x), it has been possible to express
1t as

| 2k *\\2z/ 12 22
v+k—1 v—Fk+1 y—2 v—1 1—2k
— e o P)’

k being a positive integer.
When k=1,

212, (%) = x”?G;g ((I/Z)x2

14 14
——2—; '—-2—>E w2 (x), v> —1/2.

When k> 1, x'/2], 1(x) is of the form (1.6) only when y=0orv=1/2,
With »=0 and »=1/2, we have Everitt’s kernels [13, p. 271]

2k

vo /1 %\
.Gy dl
i <<2k>
x k—1/2
a2y k(x) = (2k)112 (ﬁ)

Gk'o ((x)”‘ 1 3 2k—-1 -1 =3 2k—1)
0,2k 2

—y = e Yy oy e,
4k 4k 4k 4k 4k 4k
Note that these are the special cases Y=k, 8= (2k)~* of (1.7).

k—1/2
x‘“]o,k(x) = (2k)l/2 <i>

0, —» +crym——1r 0, ——p s oo, ——

1 k-1 -1 k- 1)
2k 2k 2k 2k

and
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