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ROOP NARAIN

1. A function R(x) by means of which an arbitrary function/(x),

subject to appropriate conditions, is capable of being represented

as a repeated integral

/> oo n oo

R(ux) I    R(uy)f(y)dydu
o Jo

has been called a Fourier kernel by Hardy and Titchmarsh [l,

p. 116]. The relations (1.1) is usually written as a pair of reciprocal

integral equations

(1.2) g(x) =   f   R(xy)f(y)dy,       f(x) =   f   R(xy)g(y)dy.
J 0 J 0

(1.1) is a symmetrical formula. There are also formulae of the type

/i oo /»oo

R(ux)  I    H(uy)f(y)dydu
o J o

in which the kernels in the two integrals are different functions. This

relation may also be written as a pair of unsymmetrical integral equa-

tions

g(x) =   f   H(xy)f(y)dy,
J 0

/I   CO

R(xy)g(y)dy.
a

A simple example of the formula (1.3) is that in which

R(x) = x1/2F,,(x)    and    H(x) = xll2H,(x),

where F„(x) denotes the Bessel function of the first kind and Hv(x)

the Struve's function [4, p. 64 and p. 328].

The functions R(x) and H(x) have been referred to as a pair of

unsymmetrical Fourier kernels by various authors. The object of this

paper is to obtain a new pair of kernels R(x), H(x) in terms of the

most general G-function satisfying (1.3).

The G-function is a sum of hypergeometric functions each of which

is usually an entire function. It is written as on the left of (1.4) below

and defined [2, p. 207] by the integral on the right
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m.n /      11,  -  -   ' > ap\

V    bi, • • • ,bj

(1.4)
= J_ f      y-i

2tt¿ J ¿       «

IIr(*y-í)IIr(i-ai + í)
j-i

II   r(l - 6y + 5)    II   Y(aj - S)
y=m4-l i—n-f-1

ÍK'ds.

The poles of the integrand must be simple and those of Y(b¡ — s),

7 = 1,2, • • • , m, must lie on one side of the contour L and those of

r(l— a¡+s), j= 1, 2, • • • , ra, must lie on the other side.

An example of a symmetrical Fourier kernel in terms of G-function

has been given by the author [3, p. 298] earlier as

ffi,
(1.5) xmG¡-;J-

It was also pointed out that

(1.6) 2ßx1i2Glp,iq(ß2x
ai,

bu

, ap, —ai, •

, bq,  —bh ■

• , bq,  —bi,

■aP\

-bj'

-ap\

-bj

and

(1.7)        2ßyxy-1i2G2p,iq (ß2x2y
q.v    ( au ' ' ' ) ap>   ~au

bi, • • • , bq,  —bi,

where ß and y are real constants, are also Fourier kernels.

• , -ap\

• , -bj

2. Let Ä(s) and $(s) be the Mellin transforms of K(x) and 77(x)

respectively, i.e.

(2.1) fl(j) =   f
J 0

xs~1K(x)dx,       §(s)
•J n

x'~1H(x)dx

then for the validity of (1.3) ®(s) and !q(s) must satisfy [l, p. 118]

the functional relation

(2.2) Ä(j)$(l - s) = 1,

and K(x), H(x) and/(x) must satisfy certain convergence conditions.

Consider the functions

K(x) = Axll2Gp+q,m+n[—
\4

i, • • • > *A

and
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H(x) = Bxll2Gp+i,m+n
\ 4     | Si,

.ßt, ai, • • • ,a¡

) °n,   Tl, , ym )

where A and B are constants. The Mellin transforms of R(x) is

®(s) =A I    x« 1/2Gp+3,m+„l — x2 \dx
J 0 \ 4 Cl,  •  •  •  , Cm,   ¿i,   •   ■   • , d„/

/.
= 2'-"M       y«"*-1-1'«-^^«^-  J

/    Oi, • • • , Op, ôi, • • • , iA

\    Ci, • • • , cm, Oi, • • • , anf

Evaluating this by a known integral [5, p. 337], we get

jf(j) = 2«-1'M

II T(cj + 1/4 + i/2) Il P(3/4 - a, - s/2)
y-i        _       j-i

fl T(3/4 - ¿, - s/2) n r(l/4 + bj + 5/2)
;=i j-i

-   min   Re(c3) < Re(j/2 + 1/4) < 1 -   max Re(oy),

p + q < m + n.

Similarly,

£(î) = 2'-"2B

II r(l/4 + 8j + 5/2) IT P(3/4 - ßj - s/2)
j-i y-i

II T(3/4 - 7i - 5/2) IT P(l/4 + ay + 5/2)
/-i í-i

- min Re(8y) < Re(j/2 + 1/4) < 1 - max Re (ft),

/> + 0 < W + M.

These satisfy the functional relation (2.2) if

2«-1'2yl

II r(l/4 + Cj + 5/2) It P(3/4 - aj - s/2)

ñ r(3/4 - dj - s/2) n r(l/4 + h + 5/2)
Í-1 J-l

II r(3/4 + Si - s/2) II r(l/4 - ßj + 5/2)

X 2I,2-«£ —-—-= 1.

fl r(l/4 - y¡ + 5/2) f[ P(3/4 + a, - s/2)
j-i y-i
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This relation admits of a solution if

AB = 1,

fly + ay = 0, j =  1, . • • , p,

bi + ßi = 0, j - 1, - • • , q,

Cj + 7y = 0, j -  1, • •  • ,1»,

(¿y + Sy = 0, J  =   1,  ■  •  • , W.

Hence we have

7í(x) = Ax>» <££,*.((1/4)*' *■ ' * ' '"" Äl' ' ' ' ' *f\    and
„ „x V ci, • • • , cm, ¿i, • • • , dn/

A-WC&^Ul/Q* ~K '    ' ' ~K' ~ai' '"' ~a")
\ —di,---,—dn,—ci,---, —cml

(2.3)

H(x)

as a pair of kernel functions giving rise (formally) to the unsymmetri-

cal formula (1.3). The formulation of convergence conditions with

which the formal analysis is justifiable is a matter which will be dis-

cussed in a subsequent paper [ó]. The importance of these functions

is due to their general form from which many known as well as un-

known kernels can be deduced as particular cases.

2.1. It is easy to show that if 7C(x) and 77(x) form a pair of un-

symmetrical Fourier kernels so also are the pairs

Vß K(ßx), Vß H(ßx)

and

yxV*(r-»K(xy),      yx1'2(-y-1'>H(x->),

where ß and y are real constants.

Using this we find that

2ßAxll2Gp+q,m+Aß2x2\ J,
\       I Ci, ' • • , cm, di, • • • , a„/

n.o        /       \—bi, • • • , —bq, —ai, • • • , — ap\
2ßA-1x1i2GPtq,m+n(ß2x2\       '        '     /' *)

\ \ —d\,  •  •  • , —dn,    — Cl,  •  •  • , —Cm/

(2.4)

form a pair of unsymmetrical Fourier kernels and so also

> Up, bi,

, Cm,   0>i,

(2.5)

2(¡yAxi-u*G£.m+«(px*>\ ' '),
\ I Cl, • • • , cm, di, • • • , dnJ

n.q       /        I —bu • • • , —bq, —ai, • • • i —ap\
2ßy A^xr-WG^m+AßW )■

\        I ~di, • • • , — dn,  —Ci, • • • , —Cm/
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3. Particular cases. Giving suitable values to the parameters in

(2.3), (2.4), (2.5), we can deduce as particular cases a number of

kernels determined earlier.1 We give here a few examples of them.

The notations for the various transcendental functions occurring be-

low are the same as used by Watson [4, p. 789].

(a) The functions

K(a
„ / 1/2 + v/2 \

x) =x1'2G13((l/4)x2 ■*"»«(*),
°V 1/2 + v/2, v/2, - v/2

and

H(x) = xl'2Gu   (l/4)x2
('

-1/2 - v/2

% v/2, - 1/2 - v/2
) = x1/2F,(x)

/

are the unsymmetrical Fourier kernels obtained by Titchmarsh  [7,

p. xxxiv].

(b) Let <p = ai—pi—P2+1/2 and let 1/2 denote the hypergeometric

function defined by Fox [8, p. 401]. The functions

R(x) = x''2(x/2)3'2-*G
— ai 1

— 1, -Pi. — P2)
n(d/4)x2

\ ai   ;-(l/4)x2l
VPl, P2 )

and

x1'2^)-*-1'2!/^ ; -(l/4)x2¡
VPl, P2

H(x) =x1/2(x/2)*-3/2Gi3((l/4)x2       at     )

\ Pi, P2,  1/

__ Sin(«i — pi)ir
= x1'2 Z -zrz-^T- ((l/2)x)2"i+*-3'2

i/s
{,

pi,p} Sin(p2 — pi)x

1 — «i + pi
; -d/4) x2l

P2 + Pi, Pi

form2 the special case p= 1 of Fox's Theorem 1 [8, p. 402].

1 Reference of the known cases has been indicated as far as it has been possible.

* The symbol Zpi, P2 denotes that to the expression following it a similar expression

with pi, pi interchanged is to be added.
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With «1=1, pi = a + l, pi = v+a+l, we have

I v/2 + a
R(x) *1/2Gü((l/4)*s

v/l + a,    v/2, -v/2/

and

-*»/»(*/2)'«.1/1( ; -(l/4)x2l
U + a, 1 + a + ^ J

20 / — y/2 — a \
F(x)=x1/2Gi3((l/4)x2       7 )

\ — c/2,      v/2,     —v/2 — a/

= x1/2[Cosa5r/„(x) + Sin ax F„(x)],

a result due to Hardy [9, p. lxii].

When a = 0, these formulae reduce to

R(x) = H(x) = xxl*J,(x),

the famous Hankel's formula and when a=l/2, they reduce to the

case (a).

(c) Let d) = cti-r-a2 — pi—p2—p3+l/2. The functions

R(x) = x1/2(x/2) "*-*Gu( (l/4)x2
— ai,     —a2

-1,     -Pi, ■P2, — pj

(  «i, a2 )

A ; -(l/4)x4
IPl, P2, P3 /

= x1/2(x/2)-*-''22/3<i     "   "  ; —(1/4)3

P2, Pi

and

H(x) = x1'2(x/2)*-3/2G24   (1/4)*0
ai,    a2

Pi,     P2,

Sin(ai — pi)7rSin(a2 — pi)ir

Pi,     1/

m x1/2(x/2)*-"2   ¿2

Pl.P2i

| 1 — ai + pi, 1 — a2 + pi x2|

U  — P2 + Pi,   1  — P3 + Pi, Pi 4 )

((l/2)x)2"'
pi.pi.p» Sin(p2 — pi)x Sin(p3 — pi)x

1 — ai + pi, 1 — a2 + pi

P2 + Pi, 1 — P3 + Pi

form3 the special case p = 2 of Fox's Theorem 1 [8, p. 402].

With ai=l, a2 = v+a+3/2, pi = o + l, p2 = »'+a + l, p3=2v+a + l,

5 The symbol 2pi, p2, p¡ denotes the sum of three terms in which each term is obtained

from the preceding one by cyclically interchanging pi, p2, p3.
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we have [8, p. 450]

K(x) = xll*(x/2)****

and

1/2

77(x) - - %— ((l/2)TTx)in

ROOP NARAIN

(!," +
"1/V3        4-1

\a+ 1,

l,v+a + 3/2

v+a+1, 2« + <z+l

[December

•(1/4)*2

■ [Sin arcJ-,(x/2) — 2 Sin(i> + a)w J-,(x/2)J,(x/2)

+ Sin(2y + a)irJ„((l/2)x)\ Cosec  vir.

(d) Take 0=1/2+ Z?-i «r- Zíí P- The functions

K(x) = x^xnyi^GZ+A (l/4)x2P.P+2(  (

-ai, ■ • • ,   —a,

— 1,   —pi, • • • , ),-Pp+i/

77(*) = x^xß^-^GZiil (1/4)»2p.p+î( (
»i,
Pi,

, oíp        \

, Pp+i,  1 I

form a pair of unsymmetrical Fourier kernels of which one is a hyper-

geometric function of the type pfp+i while the other is a combination

of p + 1 hypergeometric functions of the same type,

(e) Let <^ = a!+a2—pi—P2 —P3 + 1/2. The functions

21/ — <*i,    —ct2 \
K(x) = x1i2(x/2yi2-*G2A(l/ï)x2 )

V —1,       — Pi,       —P2,       —pi/

TSin emir       (  au a2 1
=. xv^xß)-*-1'2-2/3 \ ; -(1/4)*»}

LSin piTT (pi, P2, Pi )

Sin(pi — a2)ir

Sin pi7r
(x/2) 2-2pl

and

(         1   —  Pi + Oil,   1   —  Pi  + OLi X2\~\

[2 — pi, 1 — pi + p2, 1 — pi + p3 4 ) J

77(x) =x1'2(x/2)*-3/2G24('(l/4)x2 "*'    "' \
\              p3,   pi, pi,    1/

.,„ v^ Sin(«i - p2V

p„p, Sin(p3 - p2)x

1 + P2 — <*!,  1 + Pi — Cti
2Ï3

{. + P2 — P3,  1 + P2 — Pi, Pa

(x/2)2«+*-3/2

; -(1/4)*»|
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form a pair of unsymmetrical Fourier kernels,

(f) The functions

20/ 3       3        1 1\
tf(x) = (l/4)x3/2G„4^(x/4)<   --,   -,   -,    --J

= x-1/2[Cos x + Sin x + erx]

and

H(x) = (l/4)x3/2Go4°i (x/4)4-

= tt-1/2[Cos x + Sin x - e~x]

l)

are the special case of (2.5) with 7 = 2 and ß = 2 4. These unsym-

metrical Fourier kernels were obtained by Guinand [lO, p. 192].

4. In this section some symmetrical Fourier kernels are mentioned

which are particular cases of (1.6) or (1.7).

(a) With 7 = 2 and ß = 2~i, the following particular cases of (1.7)

may be noted.

(0 (1/4) x3'2Go4Y(*/4)<
1

r)
= ir~ll2[e-x + Cos x - Sin x]

20/ 13 1 3\
(ii) (\/4)x*i2Go<{(x/4y -,    -,    --,    --J

= ir-ll2[e-* - Cos x + Sin x].

These kernels were given by Guinand [lO, p. 192].

(b) With |3 = 2_n, where « is a positive integer, a special case of

(1.6) is

n.O   / X2   I pi
21-»x1'2Go.2„(— ~

V 22» I 2

Pn

2

Pi

2

Pn\   _

7/ = »ci, -aW

where »„„... ,^(x) is the kernel defined by Bhatnagar [ll, p. 43].

When n = 2, we have

(1/2)
20 ( x

x^Goí (-
2

■ j - »».,»(*),

where ffiM,,(x) is the kernel given by Watson [12, p. 308].

When «= 1, this reduces to the Hankel's kernel x1/2/„(x).

(c) Recently Everitt [13, p. 271] has given a generalization of
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Bessel functions. The new functions, denoted by J,,k(x), satisfy cer-

tain differential equations of even order, greater than two, and have

properties similar to the Bessel functions. Looking at the Mellin

transform [13, p. 275] of x1/2/„,t(x), it has been possible to express

it as

«.«/.,w - w'(£f'"<&((£)
u

v + k - 1 k+ 1

v     v+ 1
—,  -, • • • ,

2k       2k

v - 2    v - 1     1 - 2k

2k

k being a positive integer.

When k = l,

2k 2/? 2k 2k
■)■

x1/2/,.i(x) = x1'2gJ°((1/2)x2 —,   -— \ =■ x"2J,(x),    v > - 1/2.

When k> 1, x1/27,,i(x) is of the form (1.6) only when v = 0 or v = 1/2.

With v = 0 and f=l/2, we have Everitt's kernels [13, p. 271]

.A—1/2

*1/2/o,*(x) = (2k)ll2(£\

j.i //*Y*L    1 k -i    -i
,-' o,-

2k 2k

k-1^

2k   >

and

x^Ji,2.k(x) = (2k)ll2(£)

lfc-1/2

fc,0  // x\
3,2«: II  - 1

\\2k/

1      3

4k'  4k

2k -1     -1     -3

4k 4k '   4k

2k - V

4k    ,

Note that these are the special cases y = k, ß= (2k) * of (1.7).
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