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lows from our lemma by much the same sort of argument that pro-
duced our basic theorem.
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HArRPUR COLLEGE

UNCOUNTABLY MANY NONISOMORPHIC
NILPOTENT LIE ALGEBRAS!

CHONG-YUN CHAO

Throughout this note, L denotes a Lie algebra over the real number
field R. We shall define L® and L; inductively. L=L°=L,, L}
=[Li, L], and L;=[L, L;_1] for all integers ¢= 1. Thus, L¢is the
space of all finite sums ) [x, y], x, yE L1, Similarly, L; is the space
of all finite sums 2 [x, ¥], x€L and y&€L,_y. If Lr=0 and L—10,
L is said to be solvable of index 7. If L;=0 and L,_;50, L is said to
be nilpotent of length ¢.

DEFINITION. Let F be a subfield of R. A Lie algebra L over R is
said to be an F-algebra if its structure constants with respect to
some basis of L lie in F.

Malcev [1] showed that for each integer # 216 there is a nilpotent
Lie algebra of length 2 and dimension # which is not a rational alge-
bra. The purpose of this note is to prove the following theorem which
contains an improvement of Malcev's result:

THEOREM. There exist uncountably many nonisomorphic nilpotent
Lie algebras of length 2 for any given dimension N =10.

Following from the theorem we can easily show:

COROLLARY 1. There exist uncountably many solvable not nilpotent
Lie algebras of index 3 for any given dimension M =11.
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Let E be a subfield of R, let m, n be two natural numbers, and let
chyi=1,2,---,mn, 4, k=1,2,-- -, m, be real numbers such that
cp=—cy. Also let L be a Lie algebra over R defined by a basis
(%1, * *y Xmy, Y1, *  +, Ya) with products [x;, xi]= D t; chy: for
j, k=1,2,- - -, m, and all other products zero, so that L is nilpotent
of length =2.

LEMMA. If the numbers ¢, 1<i<n, 1<j<k=<m, are algebraically
independent over E, and if (n/2)(m?—m)>m?+n?, then L is not an
E-algebra.

Proor. We first note that (n/2)(m* — m) > m? + n® implies
(1/2)(m*—m) >n. Any n different elements [x;, xi], <k, of L, are
linearly independent, since the determinant formed by cj involved
cannot be zero by the algebraic independence of all cj. It follows
that Liisgenerated by y1,¥s, - -, ¥, denotedby L= ((y1,¥2, - - *,¥s)),
since for any xE L, there exist u;, v; such that x= Y_;[u;, v;] which is
a linear combination of y;'s. We also note that the center of L is
exactly Ly; let x be any element of the center, then x= Y =, ax;
+ Z:’_l by, and 0= [x, x:] = Z}’,‘., a;j Y., eyi for k=1,2, -+ -, m,
By linear independence of the {y:}, we have Y ™, ajch=0 for
1=1,2,--.,n,and k=1,2, .- ., m, ie., there are n-m equations
and m unknowns. By the algebraic independence of all cj, the rank
of the coefficient matrix in the system of homogeneous equations is
equal to m. Hence, we have a;=a;= - - - =a,=0. Consequently,
x= ZZ‘_, b.y, and the center is L;, and L is of length 2.

Suppose now that L is an E-algebra with basis

(1, * * * ', Zmy Bmt1, * * ° , Zmen) and structure constants dy, 151, 7, k
<m-+n, lying in E. We can assume that (21, - - -, 2,) are inde-
pendent modulo L, i.e., they span a complement C of L,, in L. We
can write 2m,;=v;+¢; with v,&€C and ¢,EL, for 1=1, 2, - .-, n.
Clearly, (21, - * *, 2m, b1, - + *, ta) is still a basis for L. We have

m m+n m+n

[z, 2] = E d:jzr+ E d:ﬂ'c—m + Z d:’jl.—m,
r=1 s=m+1 s=m+1

for 1 <4, j<m. But since [2;, z;]€ L1, the first two sums, which are in
C, must be zero. Hence we have

= m+r . .
[zir zj] = Edij by, for 4,7=1,2,---,m.
r=1
These equations describe the multiplication in L in the basis
(21, - - * y3m, b1, - -+, n); the structure constants are part of the struc-
ture constants for the basis (21, * * *, Zm, Zm41y * * * , Zmin).
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We note that ((x1, + - -, %)) also forms a complement of L; in L
say C’. It follows that we can replace each z; by an element s; such
that s;—2;& L, and s;&C’. Since L, is the center of L, the structure
constants for the basis (s1, - * +, Sm, l1, - + + , ,) are the same as for
the basis (21, - * *, 2m, &1, * - -, ts) above.

The set of vectors {sl, <., s,,.} is of course a basis for C’, and,
therefore, we have s;= D ™, @ip%p, i=1, - - -, m, where 4 =(a;,) isa
nonsingular matrix. Similarly, t,= > "1 byy,, g=1, - - -, n, with
nonsingular matrix B = (b,,). Substituting into [s;, s;]= D 1., ™,
1=<i, j=m, we obtain, by linear independence,

Z Z aipafac;ﬂ = Z d:";:'-ubur;
V4 9 u

for fixed ¢, j, and 7.
This means, with a;;=(4"1),;, that

C;a = Z E Z d:?uburdpidaio
1 F) u

These equations imply that the ¢, lie in the field E(a;y, by,), but this
field has degree of transcendency over E at most m?+n? which is a
contradiction. Hence, L is not an E-algebra.

The smallest dimension to which this applies is 10 with m =6 and
n=4. In fact, the lemma applies to any dimension N =10, because
when N=10, N?2—10N+48>0 holds, implying that n(m?—m)/2
>m?+n? holds for n=4 and m=N—4.

Now the proof of the theorem: It is well known that there exists
a set, S, of uncountably many real numbers which are algebraically
independent over the rational number field Q. With #=4 and
m=N—4, we divide S into disjoint subsets (cj). (the Greek index
distinguishes the various subsets), each of which is restricted to values

of j and k such that j <k and ¢ = — ¢, Write (L),
=((x1) ctty Xmy Y1yttt 3’4)) with prOdUCtS [xir xk]= Z:-l C;kyl'y
j, k=1,2,-- -, m, and all other products zero. There are still un-

countably many such subsets {c,} since each {ck} is finite. Conse-
quently, there are uncountably many such Lie algebras (L),. We
claim that any two (L), and (L)« are nonisomorphic. Since ()«
are algebraically independent over Q( { (Ch)er } ), apply the lemma with
E=0({(G)a})-

Now the proof of Corollary 1: In the proof of the theorem we have
seen that for each «, (L)oa=((x1, - - -, %nv—4, ¥, -+ -, ¥s)), with
[x;, x]= D to1 ays for §, k=1, - - -, N—4 where N2=10, and all
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other products zero, is a nilpotent Lie algebra of dimension N and

length 2. Let (L") o= ((x1, - - - ,XN-4, Y1, * * * , ¥4, 2o)) Where the multi-
plications of x,'s and y.'s are defined as same as in L and [za, x;] =x;,
[2a, ¥:]=2y; for j=1,--., N—4;4i=1,---, 4 and N=10. Then

clearly, (L). is a solvable not nilpotent Lie algebra of dimension
M=N+412z=11. Any two such Lie algebra (L'), and (L), are clearly
nonisomorphic because by the theorem their commutators are non-
isomorphic.

COROLLARY 2. There are uncountably many nonisomorphic non-
rational nilpotent Lie algebras of length 2 for any given dimension N =10,

REMARKS. We note that the uncountability of nonisomorphic solva-
ble Lie algebras is quite different from the case of semisimple Lie
algebras where in each dimension there are only a finite number of
nonisomorphic ones.
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