lows from our lemma by much the same sort of argument that produced our basic theorem.

References

1. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.

2. L. M. Graves, The theory of functions of real variables, 2nd ed., McGraw-Hill, New York, 1956.

3. J. LaSalle, Uniqueness theorems and successive approximations, Ann. of Math. 50 (1949), 722-730.

HARPUR COLLEGE

UNCOUNTABLY MANY NONISOMORPHIC NILPOTENT LIE ALGEBRAS¹

CHONG-YUN CHAO

Throughout this note, L denotes a Lie algebra over the real number field R. We shall define L^i and L_i inductively. $L = L^0 = L_0$, $L^i = [L^{i-1}, L^{i-1}]$, and $L_i = [L, L_{i-1}]$ for all integers $i \ge 1$. Thus, L^i is the space of all finite sums $\sum [x, y]$, $x, y \in L^{i-1}$. Similarly, L_i is the space of all finite sums $\sum [x, y]$, $x \in L$ and $y \in L_{i-1}$. If $L^r = 0$ and $L^{r-1} \neq 0$, L is said to be solvable of index r. If $L_i = 0$ and $L_{i-1} \neq 0$, L is said to be nilpotent of length t.

DEFINITION. Let F be a subfield of R. A Lie algebra L over R is said to be an F-algebra if its structure constants with respect to some basis of L lie in F.

Malcev [1] showed that for each integer $n \ge 16$ there is a nilpotent Lie algebra of length 2 and dimension n which is not a rational algebra. The purpose of this note is to prove the following theorem which contains an improvement of Malcev's result:

THEOREM. There exist uncountably many nonisomorphic nilpotent Lie algebras of length 2 for any given dimension $N \ge 10$.

Following from the theorem we can easily show:

COROLLARY 1. There exist uncountably many solvable not nilpotent Lie algebras of index 3 for any given dimension $M \ge 11$.

Received by the editors November 13, 1961.

¹ This is a portion of my thesis submitted to the University of Michigan. I am deeply grateful to Professor H. Samelson for his guidance and assistance. This work was supported by the contract AF 49(648)—104 and Lotta B. Backus scholarship.

Let *E* be a subfield of *R*, let *m*, *n* be two natural numbers, and let c_{jk}^{t} , $i = 1, 2, \dots, n, j, k = 1, 2, \dots, m$, be real numbers such that $c_{jk}^{t} = -c_{kj}^{t}$. Also let *L* be a Lie algebra over *R* defined by a basis $(x_{1}, \dots, x_{m}, y_{1}, \dots, y_{n})$ with products $[x_{j}, x_{k}] = \sum_{i=1}^{n} c_{jk}^{t} y_{i}$ for $j, k = 1, 2, \dots, m$, and all other products zero, so that *L* is nilpotent of length ≤ 2 .

LEMMA. If the numbers c_{jk}^{i} , $1 \leq i \leq n$, $1 \leq j < k \leq m$, are algebraically independent over E, and if $(n/2)(m^2-m) > m^2+n^2$, then L is not an E-algebra.

PROOF. We first note that $(n/2)(m^2 - m) > m^2 + n^2$ implies $(1/2)(m^2 - m) > n$. Any *n* different elements $[x_j, x_k]$, j < k, of L_1 are linearly independent, since the determinant formed by c_{jk}^i involved cannot be zero by the algebraic independence of all c_{jk}^i . It follows that L_1 is generated by y_1, y_2, \dots, y_n , denoted by $L_1 = ((y_1, y_2, \dots, y_n))$, since for any $x \in L_1$ there exist u_i, v_i such that $x = \sum_i [u_i, v_i]$ which is a linear combination of y_i 's. We also note that the center of L is exactly L_1 ; let x be any element of the center, then $x = \sum_{j=1}^m a_j x_j + \sum_{r=1}^n b_r y_r$ and $0 = [x, x_k] = \sum_{j=1}^m a_j \sum_{i=1}^n c_{jk}^i y_i$ for $k = 1, 2, \dots, m$. By linear independence of the $\{y_i\}$, we have $\sum_{j=1}^m a_j c_{jk}^i = 0$ for $i = 1, 2, \dots, n$, and $k = 1, 2, \dots, m$, i.e., there are $n \cdot m$ equations and m unknowns. By the algebraic independence of all c_{jk}^i , the rank of the coefficient matrix in the system of homogeneous equations is equal to m. Hence, we have $a_1 = a_2 = \dots = a_m = 0$. Consequently, $x = \sum_{r=1}^n b_r y_r$ and the center is L_1 , and L is of length 2.

Suppose now that L is an E-algebra with basis $(z_1, \dots, z_m, z_{m+1}, \dots, z_{m+n})$ and structure constants $d_{jk}^i, 1 \leq i, j, k \leq m+n$, lying in E. We can assume that (z_1, \dots, z_m) are independent modulo L_1 , i.e., they span a complement C of L_1 , in L. We can write $z_{m+i}=v_i+t_i$ with $v_i \in C$ and $t_i \in L_1$ for $i=1, 2, \dots, n$. Clearly, $(z_1, \dots, z_m, t_1, \dots, t_n)$ is still a basis for L. We have

$$[z_i, z_j] = \sum_{r=1}^m d_{ij}^r z_r + \sum_{s=m+1}^{m+n} d_{ij}^s v_{s-m} + \sum_{s=m+1}^{m+n} d_{ij}^s l_{s-m},$$

for $1 \leq i, j \leq m$. But since $[z_i, z_j] \in L_1$, the first two sums, which are in C, must be zero. Hence we have

$$[z_i, z_j] = \sum_{r=1}^n d_{ij}^{m+r} t_r$$
, for $i, j = 1, 2, \cdots, m$.

These equations describe the multiplication in L in the basis $(z_1, \dots, z_m, t_1, \dots, t_n)$; the structure constants are part of the structure constants for the basis $(z_1, \dots, z_m, z_{m+1}, \dots, z_{m+n})$.

904

We note that $((x_1, \dots, x_m))$ also forms a complement of L_1 in L say C'. It follows that we can replace each z_i by an element s_i such that $s_i - z_i \in L_1$ and $s_i \in C'$. Since L_1 is the center of L, the structure constants for the basis $(s_1, \dots, s_m, t_1, \dots, t_n)$ are the same as for the basis $(z_1, \dots, z_m, t_1, \dots, t_n)$ above.

The set of vectors $\{s_1, \dots, s_m\}$ is of course a basis for C', and, therefore, we have $s_i = \sum_{p=1}^m a_{ip}x_p, i=1, \dots, m$, where $A = (a_{ip})$ is a nonsingular matrix. Similarly, $t_g = \sum_{r=1}^n b_{gr}y_r, g = 1, \dots, n$, with nonsingular matrix $B = (b_{gr})$. Substituting into $[s_i, s_j] = \sum_{u=1}^n d_{ij}^{m+u}t_u$, $1 \leq i, j \leq m$, we obtain, by linear independence,

$$\sum_{p}\sum_{g}a_{ip}a_{jg}c_{pg}=\sum_{u}d_{ij}^{m+u}b_{ur},$$

for fixed i, j, and r.

This means, with $\bar{a}_{ij} = (A^{-1})_{ij}$, that

$$c_{pg}^{r} = \sum_{i} \sum_{j} \sum_{u} d_{ij}^{m+u} b_{ur} \bar{a}_{pi} \bar{a}_{oj}.$$

These equations imply that the c_{pg}^r lie in the field $E(a_{ip}, b_{ur})$, but this field has degree of transcendency over E at most $m^2 + n^2$ which is a contradiction. Hence, L is not an E-algebra.

The smallest dimension to which this applies is 10 with m=6 and n=4. In fact, the lemma applies to any dimension $N \ge 10$, because when $N \ge 10$, $N^2 - 10N + 8 > 0$ holds, implying that $n(m^2 - m)/2 > m^2 + n^2$ holds for n=4 and m=N-4.

Now the proof of the theorem: It is well known that there exists a set, S, of uncountably many real numbers which are algebraically independent over the rational number field Q. With n=4 and m=N-4, we divide S into disjoint subsets $(c_{jk}^t)_{\alpha}$ (the Greek index distinguishes the various subsets), each of which is restricted to values of j and k such that j < k and $c_{jk}^t = -c_{kj}^t$. Write $(L)_{\alpha}$ $=((x_1, \dots, x_m, y_1, \dots, y_4))$ with products $[x_j, x_k] = \sum_{i=1}^4 c_{ijk}^t y_i,$ $j, k=1, 2, \dots, m$, and all other products zero. There are still uncountably many such subsets $\{c_{jk}^t\}$ since each $\{c_{jk}^t\}$ is finite. Consequently, there are uncountably many such Lie algebras $(L)_{\alpha}$. We claim that any two $(L)_{\alpha}$ and $(L)_{\alpha'}$ are nonisomorphic. Since $(c_{jk}^t)_{\alpha}$ are algebraically independent over $Q(\{(c_{jk}^t)_{\alpha'}\})$, apply the lemma with $E = Q(\{(c_{jk}^t)_{\alpha'}\})$.

Now the proof of Corollary 1: In the proof of the theorem we have seen that for each α , $(L)_{\alpha} = ((x_1, \dots, x_{N-4}, y_1, \dots, y_4))$, with $[x_j, x_k] = \sum_{i=1}^{4} c_{jk}^i y_i$ for $j, k = 1, \dots, N-4$ where $N \ge 10$, and all C.-Y. CHAO

other products zero, is a nilpotent Lie algebra of dimension N and length 2. Let $(L')_{\alpha} = ((x_1, \dots, x_{N-4}, y_1, \dots, y_4, z_{\alpha}))$ where the multiplications of x_j 's and y_i 's are defined as same as in L and $[z_{\alpha}, x_j] = x_j$, $[z_{\alpha}, y_i] = 2y_i$ for $j = 1, \dots, N-4$; $i = 1, \dots, 4$ and $N \ge 10$. Then clearly, $(L)_{\alpha}$ is a solvable not nilpotent Lie algebra of dimension $M = N+1 \ge 11$. Any two such Lie algebra $(L')_{\alpha'}$ and $(L')_{\alpha}$ are clearly nonisomorphic because by the theorem their commutators are nonisomorphic.

COROLLARY 2. There are uncountably many nonisomorphic nonrational nilpotent Lie algebras of length 2 for any given dimension $N \ge 10$.

REMARKS. We note that the uncountability of nonisomorphic solvable Lie algebras is quite different from the case of semisimple Lie algebras where in each dimension there are only a finite number of nonisomorphic ones.

BIBLIOGRAPHY

1. A. I. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9-32; Amer. Math. Soc. Transl. No. 39 (1951).

Research Center, International Business Machines Yorktown Heights, New York

906