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lows from our lemma by much the same sort of argument that pro-

duced our basic theorem.
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UNCOUNTABLY MANY NONISOMORPHIC
NILPOTENT LIE ALGEBRAS1

CHONG-YUN CHAO

Throughout this note, L denotes a Lie algebra over the real number

field R. We shall define L* and L, inductively. L = L° = L0, Li
= [L*-1,1/-1], and L,= [L, Lv_i] for all integers *2ï 1. Thus, L* is the

space of all finite sumsEI*. j\> x> yCL'~l. Similarly, Lt is the space

of all finite sumsEl*. y]> xEL and y£L,_i. If Lr = 0 and Lr~19¿0,

L is said to be solvable of index r. If L¡ = 0 and Lt-i^O, L is said to

be nilpotent of length t.

Definition. Let F be a subfield of R. A Lie algebra L over R is

said to be an F-algebra if its structure constants with respect to

some basis of L lie in F.

Malcev [l ] showed that for each integer w^ 16 there is a nilpotent

Lie algebra of length 2 and dimension n which is not a rational alge-

bra. The purpose of this note is to prove the following theorem which

contains an improvement of Malcev's result:

Theorem. There exist uncountably many nonisomorphic nilpotent

Lie algebras of length 2 for any given dimension A7^ 10.

Following from the theorem we can easily show:

Corollary 1. There exist uncountably many solvable not nilpotent

Lie algebras of index 3 for any given dimension M 2; 11.
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Let £ be a subfield of 72, let m, n be two natural numbers, and let

cjt, i=l, 2, • ■ • , n, j, k=l, 2, • • • , m, be real numbers such that

4t= — Cy. Also let L be a Lie algebra over 72 defined by a basis

(xi, • ■ ■ , xm, yi, ■ ■ ■ , y„) with products [xy, **]= E¿"-icky» íor

j, k = 1, 2, • • • , m, and all other products zero, so that L is nilpotent

of length g 2.

Lemma. If the numbers c)k, l^í'á», l^j<k^m, are algebraically

independent over E, and if (n/2)(m2 — m)>m2+n2, then L is not an

E-algebra.

Proof. We first note that (n/2)(m2 — m) > m2 + n2 implies

(l/2)(m2 — m)>n. Any n different elements [xy, xk],j<k, of Li are

linearly independent, since the determinant formed by c% involved

cannot be zero by the algebraic independence of all c)k. It follows

that Liis generated by yuy2, ■ ■ -,y„, denoted by 7,i=((yi,y2, ■ • -,yn)),

since for any x£7,i there exist w<, »< such that x= E»[M«> v*] which is

a linear combination of y¿'s. We also note that the center of L is

exactly L\\ let x be any element of the center, then x= Ej^-i aixi

+ Er*-i °ryr and 0= [x, xk] = YJZ-i ayE"=i 4tJi ior k=l, 2, ■ • • , m.
By linear independence of the {yi}, we have Ey"=i <ijC% = 0 for

i=l, 2, ■ ■ ■ , n, and k=l, 2, ■ ■ ■ , m, i.e., there are n-m equations

and m unknowns. By the algebraic independence of all c'jk, the rank

of the coefficient matrix in the system of homogeneous equations is

equal to m. Hence, we have ai = a2= ■ ■ ■ =am = 0. Consequently,

x= E"-i brVr and the center is L\, and L is of length 2.

Suppose now that L is an 7i-algebra with basis

(zi, • • ■ , zm, zm+i, ■ ■ ■ , zm+n) and structure constants d%, 1 ^i, j, k

^m+n, lying in E. We can assume that (zi, • • • , zm) are inde-

pendent modulo 7,i, i.e., they span a complement C of Li, in L. We

can write zm+i = Vi+ti with ViQC and tiQLi for i=l, 2, ■ ■ ■ , n.

Clearly, (zi, • ■ ■ , zm, h, ■ ■ ■ , tn) is still a basis for L. We have

m m-fn m+n

[Zi, Zj\   =    / , UijZr "r        /  ..      aijV8—m    I / ,      aijt»—m,

r=l «=m+l s=m+l

for l^i.j^ffl. But since [zt-, Zy]G7,i, the first two sums, which are in

C, must be zero. Hence we have

n

Ui, Zj] = E da 'in   for   i,j = 1, 2, ■ - • , m.
r=l

These equations describe the multiplication in L in the basis

(zi, • • • , zm, h, ■ ■ ■ ,t„); the structure constants are part of the struc-

ture constants for the basis (zi, • • • , zm, zm+i, • • • , zm+n).
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We note that ((xi, • • • , xm)) also forms a complement of Zi in L

say C. It follows that we can replace each z< by an element 5< such

that Si — ZiELi and SiEC. Since Li is the center of L, the structure

constants for the basis (si, • • • , sm, h, • • • , /„) are the same as for

the basis (zi, • • • , zm, t\, ■ ■ • , tn) above.

The set of vectors {si, • • • , sm} is of course a basis for C, and,

therefore, we have s{= Ep-i a<A. ^= L " ' ". m> where A = (aip) is a

nonsingular matrix. Similarly, /„= E?-i °aryr, g=l, • • • . n, with

nonsingular matrix B=(bgr). Substituting into [s,-, Sj] = Eü-i ¿«+X,

1 jgi, j^m, we obtain, by linear independence,

/ . / . a%pajgCpg      / . Ojy   oUT,

V        0 «

for fixed i, j, and r.

This means, with dij=(A~1)ij, that

Cpg ss / . / . / . a,j   ouraPia0j.

i       j      u

These equations imply that the cP} lie in the field E(aip, bur), but this

field has degree of transcendency over E at most m2-\-n2 which is a

contradiction. Hence, L is not an E-algebra.

The smallest dimension to which this applies is 10 with m = 6 and

n = 4. In fact, the lemma applies to any dimension AfïïlO, because

when   A7S;10,   A72-10A7+8>0  holds,  implying  that  n(m2-m)/2

>m2-\-n2 holds for w = 4 and w = A7 — 4.

Now the proof of the theorem: It is well known that there exists

a set, 5, of uncountably many real numbers which are algebraically

independent over the rational number field Q. With « = 4 and

m = N — 4, we divide 5 into disjoint subsets (cjt)„ (the Greek index

distinguishes the various subsets), each of which is restricted to values

of   j   and    k    such    that   j < k   and    c% = — ctj.    Write    (L)a

= ((xi, ■ • • , xm, yu ■ ■ ■ , y4)) with products [x¡, xk]= Eí~i 4t?«.

j, k=l, 2, ■ • • , m, and all other products zero. There are still un-

countably many such subsets {cjt} since each {c^J is finite. Conse-

quently, there are uncountably many such Lie algebras (L)a. We

claim that any two (L)a and (L)a< are nonisomorphic. Since (c%)a

are algebraically independent over Q( {(c)k)a'} ), apply the lemma with

E = Q({(c%)a.}).

Now the proof of Corollary 1 : In the proof of the theorem we have

seen  that for each a,  (L)a=((xi, • • • ,  Xjv_4, yi, • • • , y4)), with

[xj, Xk]= E*-icky¿ f°r i> k = l, • • ■ , A7—4 where Af^lO, and all
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other products zero, is a nilpotent Lie algebra of dimension N and

length 2. Let (L')«= ((xi, • • • , xat_4, yi, • • • , yi, za)) where the multi-

plications of Xy's and y<'s are defined as same as in L and [za, xy] =Xy,

[za, y.] = 2y,- for 7 = 1, • • • , 7V-4; i = l, ■ ■ ■ , 4 and 7V=10. Then
clearly, (L)a is a solvable not nilpotent Lie algebra of dimension

M = N+i = 11. Any two such Lie algebra (L')a> and (L')a are clearly

nonisomorphic because by the theorem their commutators are non-

isomorphic.

Corollary 2. There are uncountably many nonisomorphic non-

rational nilpotent Lie algebras of length 2 for any given dimension N _ 10.

Remarks. We note that the uncountability of nonisomorphic solva-

ble Lie algebras is quite different from the case of semisimple Lie

algebras where in each dimension there are only a finite number of

nonisomorphic ones.
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