W*-ALGEBRAS WITH A SINGLE GENERATOR

CARL PEARCY

In [4] the author set forth a complete set of unitary invariants for a certain class of operators on Hilbert space. The operators considered were exactly those operators which generate a finite W^* -algebra of type I in the terminology of [2]. One immediately wants to know some nontrivial examples of such operators, and Brown provided several examples in [1]. (Nontrivial here means non-normal operator on infinite-dimensional Hilbert space.) It is the purpose of this note to show that there exists an abundance of such operators, in the sense of the following theorem.

THEOREM. If R is any W*-algebra of operators acting on a separable Hilbert space, and R is of type I, then there exists an operator $A \subseteq R$ which generates R (in the sense that R is the smallest W*-algebra containing A).

We first prove the following lemma.

LEMMA. If n is any cardinal number satisfying $1 \le n \le \aleph_0$, and \Re is any n-dimensional Hilbert space, then there is an operator A on \Re such that the W*-algebra generated by A is $\&(\Re)$, the algebra of all bounded operators on \Re .

PROOF. Whether n is finite or infinite, it clearly suffices to exhibit an operator A which has no nontrivial reducing subspace. In case n is finite, take A to be any operator with n distinct eigenvalues and with the property that no two eigenvectors corresponding to different eigenvalues are orthogonal. In case $n = \aleph_0$, choose an orthonormal basis $\{x_i\}$, $i = 1, 2, \cdots$, for \Re and define A by setting $Ax_i = x_{i+1}$, $i = 1, 2, \cdots$. That A has no nontrivial reducing subspace is proved on page 356 of [5].

We now prove the theorem, using von Neumann's result in [3] that any abelian W^* -algebra on a separable Hilbert space has a single Hermitian generator and results of Dixmier in [2].

PROOF OF THE THEOREM. One knows (see [1] for example) that R is a direct sum $\sum_{n\in N} \oplus R_n$ where each R_n is an n-homogeneous algebra and N is some set of cardinal numbers bounded above by \aleph_0 . We suppose first that the theorem is known for homogeneous algebras, and return to the proof of this case later. For each $n \in N$, let B_n generate R_n , and arrange it so that the B_n are uniformly bounded in norm.

Received by the editors November 24, 1961.

Then $B = \sum_{n \in N} \oplus B_n \in R$. Let C be a generator for the center of R. Then one sees immediately that the W^* -algebra generated by the pair (B, C) contains each homogeneous algebra R_n , and therefore must be R. We now obtain a single operator generating R as follows. Write B = H + iK, H and K Hermitian. Let $A_1 = A_1^*$ generate the same abelian W^* -algebra as the pair (H, C) and let $A_2 = A_2^*$ generate the same algebra as (K, C). Then take $A = A_1 + iA_2$.

We return now to deal with the homogeneous case. Let R be an n-homogeneous W^* -algebra $(n \leq \aleph_0)$, and let I, the unit of R, be the identity operator on the separable Hilbert space \mathfrak{R} . Then I can be written as $I = \sum_{i=1}^n E_i$, where the E_i are mutually orthogonal, equivalent, abelian projections in R. Let $\mathfrak{R}_1 = E_1(\mathfrak{R})$, let \mathfrak{R}_2 be a Hilbert space of dimension n, and let $\mathfrak{K} = \mathfrak{R}_1 \otimes \mathfrak{R}_2$ (the tensor product of \mathfrak{R}_1 with \mathfrak{R}_2). It follows from Proposition 5, page 27 of [2], that R is unitarily isomorphic to the (tensor product) W^* -algebra $R_1 = E_1RE_1\otimes \mathfrak{L}(\mathfrak{R}_2)$ of operators acting on the Hilbert space \mathfrak{K} , and thus it suffices to obtain a single generator for R_1 . From von Neumann's result in [3] we obtain a single generator C for the abelian algebra E_1RE_1 , and from the lemma we obtain a single generator E_1 for E_1 for E_2 . Let E_1 and from the lemma we obtain a single generator E_1 for E_1 for E_2 for E_2 for E_2 for E_3 for E_4 for $E_$

Remarks. (1) It is immediate from Exercise 3, page 119 of [2], that one cannot hope to extend this result to algebras of type I on nonseparable spaces.

(2) Is it the case that every W^* -algebra (regardless of type) acting on a separable space has a single generator?

BIBLIOGRAPHY

- 1. A. Brown, The unitary equivalence of binormal operators, Amer. J. Math. 76 (1954), 414-439.
- 2. J. Dixmier, Les algebres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
- 3. J. v. Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102 (1929), 370-427.
- 4. C. Pearcy, A complete set of unitary invariants for operators generating finite W*-algebras of type I, Pacific J. Math. (to appear).
- 5. M. H. Stone, Linear transformations in Hilbert space, Amer. Math. Soc. Colloq. Publ. Vol. 15, Amer. Math. Soc., New York, 1932.

RICE UNIVERSITY