ERRATUM, VOLUME 3

Marvin L. Stein, Sufficient conditions for the convergence of Newton's method in complex Banach spaces, pp. 858-863.

It follows from Lemma 2.1 that $BM \ge r$. Accordingly, inequality (2.4) cannot hold and hypothesis (ii) of the convergence theorem on page 858 cannot be fulfilled.

ERRATA, VOLUME 13

Russell Remage, Jr., On minimal sets in the plane, pp. 41-47.

Page 45, lines 10-11: Delete the phrase "almost periodic on $C \times [0, 4A] - C(1)$." This ancillary remark has no effect on any other part of the paper.

Example II, pp. 45-46, is correct, but the argument needs modification, as follows:

Page 45, line 41: Replace "relatively dense subset" by "bisequence."

Page 46, paragraph 2: Replace by "Let p be any point of \overline{Y} , and let P be the orbit-closure of p. Since K is a minimal set under T, it follows from the definition of Ψ that the projection of P on the circle \mathbb{C} is K, so that there is a point q of $Y_0 \cap P$. The preceding shows that the orbit-closure of q contains \overline{Y} , so that $\overline{Y} \subset P$, and \overline{Y} is minimal."

I am indebted to Professor W. H. Gottschalk for calling my attention to the need for the above modifications.

G. R. Blakley, Classes of p-valent starlike functions, pp. 152-157.

I thank Professor A. W. Goodman for observing that the question at the end has a trivial answer. It should have read:

"If $f(z) = a_m z^m + a_{m+1} z^{m+1} + \cdots$ belongs to S(p) does f have a decomposition $f(z) = a_m g(z) h(z)$, where $g \in S_{p-m+1}^*$, $h \in (S^*)^{m-1}$?"

Page 152, line 15 should read: "of p-valent starlike functions, be the class containing each function f which vanishes at the origin and to which."

E. Michael, A note on intersections, pp. 281-283.

Page 282, lines 25–27: Replace " \cap " by " \cap ".

Page 282, line 28: Replace "∩" by "U."

Eckford Cohen, Arithmetical notes. VIII. An asymptotic formula of Rényi, pp. 536-539.

Page 536, line 1: Replace ASYMPTOMATIC by ASYMPTOTIC.