
SUMS OF DISTINCT UNIT FRACTIONS

PAUL ERDÖS AND SHERMAN STEIN

We shall consider the representation of numbers as the sum of dis-

tinct unit fractions ; in particular we will answer two questions recently

raised by Herbert S. Wilf.

A sequence of positive integers 5= {»i, «2, • • • } with «i < »2 < • • •

is an i?-basis if every positive integer is the sum of distinct reciprocals

of finitely many integers of 5. In Research Problem 6 [l, p. 457],

Herbert S. Wilf raises several questions about i?-bases, including:

Does an i?-basis necessarily have a positive density? If 5 consists of

all positive integers and /(») is the least number required to represent

», what, in some average sense, is the growth of /(»)? These two

questions are answered by Theorems 1 and 5 below. Theorem 4 is a

"best-possible" strengthening of Theorem 1.

Theorem 1. There exists a sequence S of density zero such that every

positive rational is the sum of a finite number of reciprocals of distinct

terms of S.

The proof depends on two lemmas.

Lemma 1. Let r be real, 0<r<l and a\, a2, • • • integers defined in-

ductively by

1
ai = smallest integer n, r-^ 0,

n

I 1
a2 = smallest integer n,r-2i 0,

ai      «

II 11
ak = smallest integer », r-• — •••-^ 0.

ax      a2 ak-\      n

Then a,-+i>Oi(o<—1) for each i. Also if r is rational the sequence termi-

nates at some k, that is r = 2î_i 1/a,-.

Lemma 1 is due to Sylvester [2]. It provides a canonical represen-

tation for each positive real less than 1 which we will call the

Sylvester representation.
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Lemma 2. If r is a positive rational and A a positive integer then there

exists a finite set of integers Sir, A)—{ni,n2, ■ • • , »*}, «i<»2< • • •

<«* such that

f   1
«=i »>

«i ^ A,

»i+i — m¿ S; A 1 á * Ú k — 1.

Proof. Since the harmonic series diverges, there is an integer m

such that

(I        1 1 1\ 1

\A      2A 3A mAJ      im + I) A

Now applying Lemma 1 to

/111 1   \
r-( — +-+-+••• +-)

VI      2A      3 A mA)

we conclude that there are integers mi<m2< ■ ■ •   <m, such that

/I 1 1\       '    1

By our choice of m we see that Wi>(?m + 1)^4. Moreover Lemma 1

assures us that mi+i — m{>A. Then

{A, 2 A, • ■ • , m A, mi, m2, ■ ■ ■ , m,}

serves as 5(r, A).

Now the proof of Theorem 1 is immediate. Order the rationals

ft, ?i, fz, • • ■ . Let 5i be an 5(fi, 1). Let bi be the largest element of

5(/i, 1). Let 52 be an 5(r2, 2&i). Having defined 5i, 52, • • • , 5* de-
fines 5i+i as follows. Let bk be the largest element of Sk. Let 5*+i be

an Sirk+i, 2bk).

Then since 5t's are disjoint, there is a monotonically increasing bi-

jection 5: (1, 2, 3, • • • )—>U"_i 5* which satisfies the demands of

Theorem 1.

In fact 5 does more than Theorem 1 asserted. It is possible to repre-

sent all the positive rationals by sums of reciprocals of terms in the

5 constructed so that each such reciprocal appears in the representa-

tion of precisely one rational. Similar reasoning proves

Theorem 2. The set of unit fractions f, I, 1, • ■ •  can be partitioned
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into disjoint finite subsets Si, 52, • • • such that each positive rational is

the sum of the elements of precisely one 5,-.

Theorem 2 remains true if the phrase "each positive rational," is

replaced by "each positive integer." It would be interesting to know

the necessary and sufficient condition that a sequence of rationals

r\, r2, r3, ■ • • corresponds to the sums of a partition of the set of

unit fractions into disjoint finite subsets.

Theorem 3. If «i, »2, »8, • • • , is a sequence of positive integers with

(1) nk+i^nk(nk —1) + 1, for k = 1, 2, 3, ■ • • and (2) for an infinity of
k, »i+i>»*(«* —1) + 1 then 2^-1 Vw* is irrational.1

Proof. Observe first that if Oi, a2, • • • is a sequence of positive

integers with 0*4.1 = 0* (a* —1) + 1 for k = \, 2, 3, • • -, and ßi>l, then

23r-i l/a» = l/(oi — 1). By assumption (2) there is h such that nn> 1.

From the observation we see that for any integer i,

1 °°    1        J_   1 1

«t+l k-h   »* n-A   »t »Í+1 — 1

Thus the Sylvester representation of 2*1-» V»* is 1/»a + 1/»a+i

+ 1/«a+2+ • • • . Since the Sylvester representation of 2"-» 1/»* has

an infinite number of terms, we see by Theorem 1 that $2"-» Vw*

is irrational. Hence so is 2iT-i l/n* irrational.

We will soon strengthen Theorem 1 by Theorem 4 for which we will

need

Lemma 3. The number of integers in (x, 2x) all of whose prime factors

are^x112 is greater than x/10 for x>xo.

Proof. The number of these integers is at least x— ^,Pi (x/pt),

where the summation extends over the primes x1'2<pi<2x. From the

fact that S„<i, l/p = log log y+c-f-o(l) Lemma 3 easily follows.

Theorem 4. Let 0<Oi<a2< • • • be a sequence A of integers with

52n-i l/ßn= °°- Then there exists a sequence B:bi<b2< • • • of

integers satisfying a„<b„, 1 ̂ » < 00, such that every positive rational is

the sum of the reciprocals of finitely many distinct b's.

Proof. Set A(x) = ]>><<* 1- We omit from A all the a,-, 2*=:a<

<2*+1 for which

(1) A(2k+l) - A(2k) < 2k/k\

Thus we obtain a subsequence A' of A, 0/ <a2 < • • • . Clearly

^3"_i l/on' = «>, since, by (1), the reciprocals of the omitted a's con-

1 Added in proof. A similar result is to be found in [2].
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verges.

Set A'(x) = 2¿<i 1- Denote by ki<k2< • • • the integers for

which

(2) tki = A'i2k!+1) - A'i2ki) £ 2e7¿.2.

By (2), if m^ki then i4'(2-+l)=.4'(2»).

By Lemma 3 there are at least (4<)/10 integers in (2*<+1, 2*i+2) all

of whose prime factors are less than 2(*i+1)/2. Denote such a set of

integers by b® <b® < • • • <bf. where g< is, say, the first integer

larger than tkJlO. Clearly

X) l/6r(° > (1/40) D l/aj    (2*'' < a} < 2*' + 1).
r-l

Thus from ^,1/aí = w we have

(3) ¿Sl/if=oo.
¿=1 r_l

Clearly bf.<b(*+1); thus all the ¿>'s can be written in an increasing

sequence D:di<d2< • • • .

Now let Ui/vi, u2/vi, • • • be a well-ordering of the positive ra-

tionals. Suppose we have already constructed 5i<¿>2< • • • <bn„ so

that a¡ <bi, l^iúmn and that u,/vT, l=r<», are the sums of re-

ciprocals of distinct Z»'s. Choose

(4) 2"< > mzx{vn, bmn, a'mn + 1}

and let dji+i<dii+2< • • •   be the d's greater than 2*i+1. By (3) and

(4) there is an j,>j< such that

(5) I)   l/dr < un/vn ;g   Z   l/dr.
r-y¡+i r-ii+1

By (5)

(6) 0 < «„A, - X) l/¿r = Cn/Dn < l/du.

Let x be the integer such that 2x<d,i^2x+l; then x = k.+i for some

s^i (by definition of the d's). Since, by definition, all the prime fac-

tors of dr,ji^rúqi are less than 2<I+1)/2 we have

(7) Dn Í vn[d,<+i, dii+i, ■■■,d.i]< vni2*+yl-+m <2-(2*9'iH"*<2**

for x>x0.
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Now

C„       1 1
(8) -- — + ... 4- —,       / < C* log Dn < C22*i*

T>n     yi yj

with, clearly, dSi<yi< • • • <y{ (by [3]).

Define

bmn+t = dii+t    for t = 1, • • • , j,- - ji,

bmn+'i-U+t' = Vf for Uí'á/.

By (8) the ¿>'s are distinct. Clearly i%+(>a%+1 for t= 1, • • • , 5<—j<

since bm„+t = dji+t, and the ¿'s are greater than the corresponding

ö"s, which in turn are greater than the a's. By (8) the y's do not

change the situation. Their number is at most C22xtz. But by (2)

there are at least

2k'/k] > 2x~1/x\       x = k, + 1

aí 's in (2*>, 2*»+1) and by definition to more than half of them there

does not correspond any d¿; thus to those a/ 's to which no d corre-

sponds we can make correspond the f<C22xld y's since clearly

C22*i¡<2*-l/x2, if x>x0.

The proof is then completed as for Theorem 1. Note that each &,• is

used in the representation of only one rational number.

Theorem 4 is a best possible result since if 2<-i 1/°a < °° the con-

clusion could not possibly hold.

In the next theorem y is Euler's constant.

Theorem 5. limn,00/(»)e~n = e~'1'.

Proof. Define g («) by

11 1 11 11
•+ — +••• +-T-r<n< — +— + • • • + -—-4

1        2 g(n) 1        2 g(n)      g(n) + 1

Then «— 53i="i V* is a rational number less than 1 which we de-

note an and which can be expressed in the form

A
an =

[1, 2, • ■ ■ , g(n)]

for some integer A.

Now, 0<w/u<l can be represented as the sum of less than

clog »

log log V
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distinct unit fractions [3].

Thus an is the sum of fewer than

e log [1, 2, • • • , gjn)]

log log [1,2, ■ •-,«(»)]

unit fractions (each less than l/g(«)). The expression

log [l, 2, • • • , gin)] is asymptotic to g(n) [4, p. 362]. Thus for

large », o„ is the sum of fewer than

cgin)

log gin)

distinct unit fractions.

Hence

cgin)
gin) < fn) < gin) +

Thus

log g(n)

lim f(n)/g(n) = 1.

From the equation

1        1 1
»=—+—+••■ H-— + an = log g(n) + in + an + y

1        2 g(n)

with limn^oo e„ = 0 and lim„^„ a„ = 0, it follows that g(n) is asymptotic

to en/eT.

This proves Theorem 5.
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