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0. Introduction and preliminaries. Following R. E. Johnson [l]

we assume in this paper that any rings we shall be concerned with

satisfy either one or both of the following conditions:

(/¡) If the right annihilator of a left ideal A is nonzero, then there

exists a nonzero left ideal B such that AC\B — 0.

iJr) =the right left symmetry of iJi).1

We say that a ring is a /¡-ring, a /.-ring or a /-ring if it satisfies

iJi), iJr) or both of them.

A module A is called an essential extension of a submodule B if

BC\C^0 for every nonzero submodule C oí A. A module is said to

be injective if it is a direct summand of every extension module. It is

well known that every module M has a maximal essential extension

M. M is injective, and is unique to within an isomorphism over M.

Let 5 be a /¡-ring. Then we can define the multiplication in the

maximal essential extension S of the left 5-module 5 such a way that

(i) S forms a ring and (ii) the multiplication coincides, on SX§, with

the scalar multiplication. This ring is unique up to an isomorphism

over 5, and is denoted by Si. As is known, Si is regular (in the sense

of von Neumann), and is left self injective, that is, injective as a left

module over itself. An extension ring T of a /¡-ring 5 is called a left

quotient ring of 5 if the left 5-module T is an essential extension of

the left 5-module 5. It is also known that every left quotient ring of

5 is isomorphic, over 5, to a subring of 3¡. Thus, 5¡ is the maximal

left quotient ring of 5.

We define similarly a right quotient ring and the maximal right

quotient ring ST of a /r-ring 5.

For any /-ring 5 it is easily seen that the following conditions are

equivalent:

(i) There exists an extension ring T of 5 with the properties that

(a) it is regular (both left and right) self injective, and (b) every non-

zero one-sided 5-submodule of T has a nonzero intersection with 5.

(ii) Every left quotient ring of 5 is a right quotient ring of 5, and

every right quotient ring of 5 is a left quotient ring of 5.

In this case any maximal left quotient ring of 5 and any maximal
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1 In the terminology of Johnson [l ] (/¡) ((JiO) means that the left (right) singular

ideal of the ring is zero.

141



142 Y. utumi [February

right quotient ring of 5 are mutually isomorphic over 5. We denote

this fact by writing 5¡ = 2?r.
The main theorem (Theorem 3.3) in this paper states that for any

/-ring 5 we have 5j = Sr if and only if 5 satisfies the converse of (Ji)

and (/r), that is, the following two conditions:

(Ki) If AC\B = 0, B^O, for left ideals A and B, then the right
annihilator of A is nonzero;

(KT) =the right left symmetry of (K~i).

1. Strongly regular rings. A ring is called strongly regular if for

any element x there exists an element y such that x2y = x. As is well

known, in this case xy is central idempotent and xy = yx. Every one-

sided ideal of a strongly regular ring is two-sided. A regular ring is

strongly regular if and only if it is of index 1, that is, it contains no

nonzero nilpotent elements.

A left ideal A of a ring is said to be closed if there are no left ideals

B such that A t^B and B is an essential extension of A. The set of all

closed left ideals of a Jj-ring 5 forms a complete complemented

modular lattice, which is denoted by L(S). If a ring Pis a left quotient

ring of a Pi-ring 5, then T is also a Ji-úng, and L(T) is isomorphic to

L(S) by the correspondence yl(£P(P))-vin5. A left ideal of 5"¡ is

closed if and only if it is principal. Thus, P(5¡) is the lattice of all

principal left ideals of 5¡. Let A, BEL(S). Then A(~\B is the inter-

section of A and B, while A UP is the maximal essential extension

of A+B.
We can define similarly the notion of a closed right ideal. R(S)

denotes the lattice of all closed right ideals of a Pr-ring 5. R(Sr) is the

lattice of principal right ideals of 5r.

Theorem 1.1. Let S be a regular ring. Then the following conditions

are equivalent:

(i) 5 is strongly regular.

(ii) L(S) is distributive.

(iii)  The lattice L of principal left ideals of S is distributive.

Proof. (i)=*(ii). Let A, BEL(S). Then ABCAr\B = (AC\B)'
CAB, and so AB = AC\B. Thus, for any P, Q, REL(S) we have
Pn(Q+R) = P(Q+R)=PQ+PR=(Pr\Q) + (Pr^R). Since L(S) is
complemented, P H (Q U R) = ((P H Q) U (P A R)) W C and
((P r\ Q) U (P H P)) Pi C - 0 for some C £ P(5). Then ((PHQ)
+(pnp))nc=o and PfMç+P)nc=o, hence pn(çup) nc=o,
which means that C=0 and PÍ\(Q\JR) = (Pi\Q)V(Pr\R).

(ii)=>(iii) follows immediately since L is a sublattice of L(S).

(iii)=*(i). Let Se = Sf, e = e2 and/=/*. Then 5(1-e) = 5(1-/) by
(iii). Thus e=/. This shows that every idempotent is central. There-
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fore xyx = x means x2y — x, as desired. In case 5351, it follows from the

above argument tSt is strongly regular for any t = t2. Let S3x, and

let a, b, c be idempotents such that Sx = Sa, xS=bS and aS+bS — cS.

Then xEtSt, t = t2 for t — a-r-c — ac. Therefore 5 is strongly regular.

Corollary 1.2. If S is strongly regular, then so is 3¡.

In fact, L(5) is distributive by assumption. Since Z,(5)~Z,(5¡),

LiSi) also is distributive, and hence 5j is strongly regular.

Corollary 1.3. Let S be a Ji-ring. Then 5¡ is strongly regular if and

only if LiS) is distributive.

In fact, L(Si) is distributive if and only if so is L(S).

Theorem 1.4. Let S be a J-ring. If S has a strongly regular left quo-

tient ring P and a strongly regular right quotient ring Q, then 5¡ = 15,.

Proof. Let O^pEP. Then ap = b?¿0 for some a, bES, and a2q = a

lor some qEQ- Since b^O, 0i¿b2 = bap and ba^O. Hence O^ôa)'

= b(ab)a and 0 ¿¿ ab = a2qb = a(aq)b = a(aq)2b = a2(qaq)b = a2(aq2)b,

whence aq2bi¿0. Thus, (aq2b)c = d?i0 for some c, dES. abc=(a2q)bc

= a(aq)bc = a(aq)2bc = a2(qaqb)c = a2(aq2b)c = a2d, and so a2pc = a(ap)c

= a2d. Hence a2(pc—d) = 0 and ((pc—d)a2)2 = 0, which implies that

(pc - d)a2 = 0 and p(ca2) = da2. Now 0 ■£ d = aq2bc = (aq)(qbc)

— (aqY(qbc) = (aq)(qbc)(aq)2 = (aq2bc)a2q2 = da2q2, and hence da29á0.

This shows that P is a right quotient ring of 5. Thus we have proved

that every strongly regular left quotient ring of 5 is a right quotient

ring of 5 provided 5 has at least one strongly regular right quotient

ring. It is not too hard to see that Sj is the maximal left quotient ring

of P. Hence S¡ is strongly regular by Corollary 1.2. Therefore 5¡ is

a right quotient ring of 5. This implies that every left quotient ring

of 5 is a right quotient ring of 5. Similarly we can show that every

right quotient ring of 5 is a left quotient ring of 5. Thus, 7>i = S„

completing the proof.

2. The condition (K). For any subset Z of an extension ring of a

ring 5 we denote by l(S, Z) the set of all xG5 such that xZ = 0.

Similarly r(S, Z) denotes the right annihilator, in 5, of Z.

Lemma 2.1. Let S be a Ji-ring, and let AEL(Si). Then r(S, Ai\S)

= r(S,A).

Proof. D is obvious. Let (Ar\S)x = 0, xES, and set B = /(5¡, x).
Since BEL(Si) and BC\SDAr\S, we have BDA by the isomor-
phism LiS)^.LiSi). Hence ^4x = 0 and xEriS, A). Therefore

r(5, AnS) CriS, A).
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Theorem 2.2. Let S be a Ji-ring. Then the following conditions are

equivalent :

(Ki) If Ar\B = 0, B?¿0 for two left ideals A and B, then the right
annihilator of A is nonzero.

(K{ ) Every closed left ideal is an annihilator.

(K{') Every nonzero right ideal of Si has a nonzero intersection with

5.

Proof. (Ki)=$(K{'). Suppose that 5HP/ = 0 for some nonzero right

ideal P>_of Si. Let 0^e=j2ED. By Lemma 2.1 r(S, 5j(l-e)n5)
=_r(S, 3,(1 - <?))_= r(Si, 5,(1 - e))i\S = eSii^SCDl^S = 0. Since
(Si(l-e)r\S)r\(Ster\S) = Q and Siei\S^0, this contradicts (Kt).

(K{')=*(Ki). Let A be a closed left ideal, and set l(S, r(S, A))

= B.UA j*B, there is a left ideal 6V0 such that FOCand At^C = 0.
Let D be a maximal left ideal such that D~Z)A and DC\C=0. Then

D is closed, and D = S¡enS for some e-eVl. By (K¡')(í-e)Sií\S
5¿0. Let 0^ï£(l-c)5,r\5. Then Dx = 0 and Ax = 0, hence Bx = 0

and Cx = 0. Thus (D@Qx = 0, and (F/0C)fYE = O for some left ideal

E^O. Hence CC\(D@E) =0, which contradicts the maximality of D.

Therefore A =B.

(K{)=*(Ki). Let A(~\B = 0 and B^O for left ideals A, B of 5.
Let C be a maximal left ideal such that CZ)A and CAP = 0. Then C

is closed, and hence is an annihilator by (K[). If r(S, ^4) = 0, then

r(S, C)=0 and C=S, which means that P = 0, a contradiction. Thus

r(S, A) t^O, as desired.

Corollary 2.3. Si satisfies (Kt) for any Ji-ring S.

In fact, Si satisfies (K") because ~§i is the maximal left quotient

ring of itself.2

Corollary 2.4. If a J-ring S satisfies (K¡) and (KT),then L(S) is

dually isomorphic to R(S) by the annihilator relation.

This is evident from (K{) and its symmetry.3

Corollary 2.5. Let S be a Ji-ring, and T a left quotient ring of S.

(i) If S satisfies (Ki), then so does T.
(ii) If T is a right quotient ring of S, and if T satisfies (K¡), then S

also satisfies it.

In fact, Si is the maximal left quotient ring of P. Let A be a non-

zero right ideal of 5,. If 5 satisfies (Ki), AC\S^0 by (KI1). Hence

1 Of course, (_K¡) itself also follows immediately from the injectivity of Si.

• It should be noted that every annihilator left (right) ideal of a Ji — (J,—) ring

is closed.
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A(~\T^0, and T also satisfies (Kl'). Conversely, if T is a right quo-

tient ring of 5, AC\T^0 implies that AC^S^Q. This proves (ii).

Lemma 2.6. Let S be a Ji-ring, and let S=A@B, A and B being

ideals. If S satisfies (K¡), then so does A.

Proof. Let P, Q be left ideals of A such that PC\Q = 0, Q^O. Then
(P®B)C\Q = 0. Hence (P®B)(a+b)=0, a+b^0 for some aEA,
bEB. Therefore 5ô = 0 and b = 0, whence a^O. Since Pa = 0, this

proves that A satisfies (K{).

3. The main theorem. A right ideal A of 5 is called large if A(~\B

5^0 for every right ideal B^Q.

Lemma 3.1. Let S be a Jr-ring, and T an extension ring. Denote by U

the set of all elements x of T such that \y\yES, xyES] is a large right

ideal of 5. // every nonzero left ideal of T has a nonzero intersection with

S, then U is a right quotient ring of S.

Proof. It is easily seen that U forms a subring of T. Let V be the

set of all elements y ET such that r(S, y) is large. Then F is a left

ideal of /, and VT\S=0 since 5 is a /r-ring. Hence F=0 by the

assumption. It follows from this that U is a right quotient ring of 5,

as desired.

We proved in [3] the following

Theorem 3.2. Every regular left self injective ring S is decomposed

into the direct sum of two ideals A and B in such a way that A is strongly

regular, and B is generated by idempotents.

In fact, by [3, Theorem 4] 5=.4 ©5, where A is strongly regular

and B does not contain any nonzero strongly regular ideals. B is

generated by idempotents by [3, Theorem 2].

By virtue of this theorem we obtain

Theorem 3.3. Let S be a J-ring. Then 5¡ = 5r if and only if S satisfies
(Ki) and (K,).

Proof. Let Si = Sr. By Corollary 2.3 5¡ satisfies (K¡). Hence 5 also

satisfies (Ki) by (ii) of Corollary 2.5. Similarly 5 satisfies (K,), prov-

ing the only if part of the theorem. To see the if part let U be the set

of all elements x of 5¡ such that {y\ yES, xyES] is a large right ideal

of 5. By Lemma 3.1 U is a right quotient ring of 5. Let 5¡3e = e2.

Then (5"¡en5)n(5¡(l-e)n5) = 0. By Corollary 2.4 L(S) is dually
isomorphic to R(S) and the correspondence is given by the anni-

hilator relation. Since S¡e C\ S, 5¡(1 — e) r\ 5 G L(S), we have

r(S, Sie í\ S) U r(S, 3,(1 - e) H 5) = 5 in R(S). By Lemma 2.1
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r(S, Sief~\S) = r(S, 5¡e) = r(5"¡, 5¡e)r\5=(l-e)j>¡f>\5, and similarly

r(S, 5¡(l-e)n5)=e5,n5. Therefore ((l-e)5¡Pi5)U(e5¡n5)=5.
This implies that ((1 —e)5¡f^5) +(e5¡H5) is a large right ideal of 5.

Evidently e(((l-e)5¡n5) + (e5¡n5)) =eS,í\SCS. It follows from
this that eE U. Therefore we have proved that every idempotent in

Si is contained in U. By Theorem 3.2 there exists a central idem-

potent/ of Si such that S if is strongly regular, and 5¡(1 —/) is gener-

ated by idempotents. Since/G U, U=Uf® ¿7(1— /). As is easily seen

S if is the maximal left quotient ring of Uf. Since Sif is strongly regu-

lar, LiUf) is distributive by Corollary 1.3. Now by (i) of Corollary

2.5 U satisfies (Ki) and iKr), and hence Uf also satisfies them by

Lemma 2.6, whence LiUf) and RiUf) are dually isomorphic by

Corollary 2.4. Thus, RiUf) is distributive, and so the maximal right

quotient ring of Uf is strongly regular by Corollary 1.3. Therefore

15if is a right quotient ring of Uf by Theorem 1.4. On the other hand,

since Siil—f) is generated by idempotents, and since U contains

every idempotent in 5¡, it follows that 5¡(1— /)= ¿7(1 — /). Hence

Si = Sif®Siil-f) is a right quotient ring of U= Uf@Uil-f). Since
¿7 is a right quotient ring of 5, we see that 5¡ is a right quotient

ring of 5. We can prove similarly that 5r is a left quotient ring of 5.

Thus, we have 5¡ = 5r, completing the proof.

4. WR-rings and continuous rings. A ring is called a semisimple

J-ring if every one-sided ideal contains a nonzero idempotent. By [2,

(4, 10) ] every semisimple I-ring is a /-ring. A ring is said to be of

bounded index if there is an integer » such that x" = 0 for every nil-

potent element x. A semisimple /-ring is WR ( = weakly reducible)

if and only if every nonzero ideal contains a nonzero ideal of bounded

index by [4, Theorem 9]. In [2, Theorem 5] we proved that Si — S,

for any semisimple WR-ring 5. Therefore from Theorem 3.3 we ob-

tain

Theorem 4.1. If a semisimple I-ring S is WR, then S has the fol-

lowing property: The right (left) annihilator of a left (right) ideal A is

nonzero if and only if there exists a nonzero left (right) ideal B such that

AC\B = Q.

Let 5 be a regular ring. If the lattice L of principal left ideals is

complete, we say that 5 is a complete regular ring. A complete regu-

lar ring 5 is called continuous if L has the following property:

(Uoa)ni = U(can&) and (f\aa)^Jb = C\(aayJb) for any chain (aa) and

any element b in L. We proved in [4, Theorem 7] that a complete

regular ring is continuous if and only if it satisfies (Ki) and (Kr).

Thus, by Theorem 3.3 we obtain
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Theorem 4.2. A complete regular ring S is continuous if and only if

5¡ = 5r.

By [3, Theorem 3] every continuous regular ring is (both left and

right) self injective if it contains no nonzero strongly regular ideals.

Hence we have

Theorem 4.3. Let S be a complete regular ring, and suppose that S

does not contain any nonzero strongly regular ideals. Then 5¡ = 5r (if and)

only if S is self injective, that is, S=Si = Sr.
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INVERSE LIMITS OF SOLVABLE GROUPS

ETHAN D. BOLKER

In this paper we generalize to groups of Galois type some results

of P. Hall on finite solvable groups [l; 2; 3]. We need, in a modified

form, some results of van Dantzig: the definition of supernatural

numbers (which are related to van Dantzig's universal numbers) and

Theorem 5, which he proved for ordinary ¿>-Sylow subgroups [6].

Lemmas 1 and 4 and the method of proof in Theorem 5 are due to

Täte [S].

A topological group G is of Galois type if it is compact and totally

disconnected. In any Galois type group the open normal subgroups

form a neighborhood base at the identity. Every closed subgroup is

the intersection of the open subgroups containing it [4]. Whenever

M and N are open normal subgroups of G and NZ)M we shall write

0jv for the natural homomorphism of G/M onto G/N (these quotient

groups are finite) and <£# for the natural homomorphism of G onto

G/N. G is the inverse limit of the groups {G/N}, N ranging over the

open normal subgroups of G. Conversely, the inverse limit of finite

groups is of Galois type.
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