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It has been conjectured that if the order g of a finite noncyclic

simple group G is divisible by a prime power p", then g>p2n. We shall

show this in the case that the £-Sylow groups of G are abelian. In

fact, we shall prove the theorem:

Theorem. Let G be a finite group. Let p be a prime and assume that

the p-Sylow subgroups P of G are abelian. Then the intersection of all

p-Sylow subgroups of G appears as intersection of P with one of its

conjugates.

Corollary. If the finite group G of order g has an abelian p-Sylow

group P of order pn, g?Épn, and if the maximal normal p-subgroup D

has order pd, the number of conjugates of P is at least pn~d-\-l and

g^pn(p"-d+i). In particular, if D= {l}, g^pn(pn+l).

Proof of the Theorem. If the £-Sylow group P has order 1, the

theorem is trivial. We use induction. If Dt¿ {1}, we can deduce the

statement for G from that for G/D. Hence we may assume D = {1}.

Suppose that

(1) PHPiPi • • -r\PT = {l}

where Pi, P2, • • • ,PT are conjugates of the £-Sylow subgroup P = P0

of G and where the representation of {1} as such an intersection with

a minimal r is chosen. If r = 1, we are finished. Assume then r ^2 and

set

(2) m = Pi c\ p2 n • • • n pr_i,

(3) r = pnM = pnPin • •-npr_i?i ji}

while by (1)

Tf\PT= {l}.

Let H be the subgroup generated by P, Pi, • • • , Pr-i,

tf= {P,Pi, P2, ■ • -,Pr-i}.
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Since the P¡ are abelian and TQP,- for j = 0, 1, • • • , r — 1, T is in-

cluded in the center Z(H) of H. Hence H^G, since otherwise T would

be normal in G and then T would belong to all £-Sylow subgroups of

G, contrary to (1). In particular, the theorem is true for H in the

place of G.

The group T(Hi\Pr) is an abelian /»-subgroup of H. Let R be a

p-Sylow subgroup of H with R~DT(Hr\Pr). By the theorem, applied

to H, there exists a £-Sylow subgroup R* of H such that the inter-

section X of all the £-Sylow subgroups of H is equal to R(~\R*. The

groups P, Pi, ■ • ■ , Pr-i are £-Sylow subgroups of H and hence

x ç p n Pi n • • • n pr_x = t

while the p-group TQZ(H) must belong to all £-Sylow groups of H

and hence to X. Thus, T=X and

T = RC\R*.

If aER*r\Pr, then aEHr\PrQR. Hence oERC\R*=T. Conse-

quently, oETC\Pr= {l} ; cf. (3) and (1). This shows that J?*HPr

= {1}. Since PÇ.H, the ^-Sylow-groups of ii are Sylow groups of G.

In particular, R* is a conjugate of P. Replacing Pr by a suitable con-

jugate, we obtain a £-Sylow subgroup P' of P with PC\P* = {1} and

this concludes the proof.

If in the notation of the theorem, we have D = PC\P* where P* is

a conjugate of P, then as is well known, we have pn~d distinct £-Sylow

groups of the form a~lPa with oEP*. Since they are all different

from P*, the number of conjugates of P is at least pn~d-\-l. On the

other hand, the number of conjugates is g/m where m is the order of

the normalizer of P in G. Since m¡zpn, g^pn(p,'~d-\-l). This estab-

lishes Corollary 1.

Corollary 2. If the finite group G of order g has an abelian p-

Sylow group P of order pn, if G possesses neither a normal p-subgroup

differentfrom {l\ nor anormal subgroup ofindex p,theng^2pnip"-{-l).

Indeed, it follows from Burnside's theorem that the normalizer of

P has at least order 2p" in this case while the number of p-Sylow

groups is at least pn + l.
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