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1. An upper bound for the norm of a system of ordinary differen-

tial equations can be obtained by comparison with a related first order

differential equation, [4; 8]. This first order equation depends on an

upper bound for the norm of the right side of the system. Recently,

it has been pointed out [l; 6] that this same upper bound also gives

a lower bound for the norm of the solution in terms of another first

order equation. Most of the known explicit bounds, as well as criteria

for global existence and boundedness, can be obtained from such com-

parison theorems, together with a detailed analysis of the resulting

first order equations. The same approach also yields information on

the approach of a solution to a limit. As suggested in [l ], bounds for

approximate local solutions can also be obtained in this way. The

bounds given in [l ] are sometimes difficult or impossible to calculate

explicitly, but it is possible to give slightly weaker bounds, which

are more easily calculated.

The main conclusion to be drawn from this paper is that the com-

parison method provides not only a powerful tool for obtaining

bounds for solutions, but also a unified approach to many such prob-

lems.

2. Consider the system of ordinary differential equations

(1) x' = f(t, x),

where x and/are «-dimensionalvectors, and 0 ¿t < oo. We assume that

f(t, x) is continuous for 0^t<«>, \x\<<x>, but we require no as-

sumptions on / to assure the uniqueness of solutions of (1), as our

arguments do not require uniqueness. Suppose that there exists a

continuous non-negative function u(t, r) on 0 ^t < oo, 0^r < oo, such

that

(2) \f(t,x)\   á«(f, |*|),        0g/< »,       |*|   < oo.

It is well-known [4; 8] that if x(t) is a solution of (1), and r(t) is the

maximum solution of the scalar equation
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(3) f> = U(t, r)

with r(0) = | x(0) |, then x(t) can be continued to the right as far as

r(t) exists, and

(4) |*(0| áKO

for all such t. It can be shown, by the same type of argument, that

| x(t) | is also bounded below, as follows.

Theorem 1. Let x(t) be a solution of (1) and let f (t) be the minimum

solution of

(5) ? - - »ft ft

with f(0) = |x(0) |. Then, for all /^0 such that x(t) exists and f(t) ^0,
we have

(6) |*(/)| fcrö).
Since Theorem 1 is essentially contained in Theorem 1 of [l], an

explicit proof will not be given here. It may be noted that Theorem 1

can also be derived directly from Lemma 2 of [3], or it can be proved

by an argument analogous to the proof of Theorem 8 of this paper.

The restriction f(¿) 3:0 is required to ensure that u(t, Ç(t)) is defined.

Theorem 1 involves a comparison between solutions of the system

(1) and the scalar equation (5). Another comparison theorem arises

in the consideration of limiting behavior of solutions.

Theorem 2. Suppose that (2) is satisfied for a function w(i, r) which

is monotone nondecreasing in r for each fixed t, and suppose that all

solutions of (3) exist obO^K<» and tend to limits as t—* °°. Then all

solutions of (1) tend to limits as t—><». If x(t) is a solution of (1) with

lim{..c x(t) = X, if r(t) is the maximum solution of (3) with r(0) = | x(0) \,

and if lim^oa r(t) =R, then

(7) | X - x(t) |  áfi- r(t),       0^/< °°.

Proof. The first part of the theorem is contained in [3, Theorem

13], and we need only prove the inequality (7). If t>t^0,

I x(î) - x(t) |   = I   f f(r, x(r))dr |  *  f   | f(r, x(r)) | dr

^   f co(t, I x(t) \)dr£ j   w(t, r(r))dr

= r(t) - r(t),

using (2) and the monotonicity of a>. The result now follows if we let
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t—>oo holding t fixed. This proof is only a slight extension of that

given in [3, Theorem 4].

3. If the function w(i, r) has the form \(t)(p(r), the condition (2) is

replaced by

(8) |/(/,*) |   áX(*)#(|*|).

The results of §2 lead us to consider the separable first order equations

(9) r> = \(t)4>(r)

and

(io) f = - x(0*(f),

which can be solved explicitly. We define J(r)=Jódu/4>(u). If this

integral diverges at zero, the lower limit of integration can be re-

placed by any fixed e>0, but we will use the lower limit zero for

convenience. If f0*du/<j>(u)=R^i<x>, the function J maps the half

line [0, oo ) onto the interval [0, R), with J(<x>)=R. The function J

has a positive derivative l/4>(r), and is therefore monotone increasing.

Thus the inverse function J~l exists and is monotone increasing on

[0, R).
If r(t)  is a solution of  (9)  with   r(0)=r0,  f^K(s)ds = fradu/<j>(u)

= J(r) - J(r0). Thus J(r) = J(r0) +f0*K(s)ds, and

(11) r(t) = /-1 ïj(r0) + j \(s)dsl.

This solution exists as long as -7(r0) +f£h(s)ds is in the domain [0, R)

of J'1. This requires J(ro)+f£\(s)ds<R, or f0'\(s)ds<f?0du/<l>(r). It
follows that the solution r(t) of (9) with r(0) = ro exists on the interval

[0, T), where T is defined by f0T~K(s)ds = f"0du/ct>(u). If f"du/4>(u) = <x>,

the solution exists on 0^/<«>. If f0"\(s)ds<f'0du/<f>(u) ^ oo f then

J(r0) +f£k(s)ds<R, which implies r(t) < oo, and the solution r(t) re-

mains bounded on 0^t< <». Since r(t) is monotone increasing, this

implies that r(t) tends to a limit as t—*<*>.

We can solve (10) by the same approach. We find that the solution

f (t) of (10) with f (0) = r0 is given by

t(t)=J-i[j(ro)-f\(s)ds~^,

defined so long as /(ro) —/¿X(s)¿se0. Thus f (i) exists on the interval

[0, t], where fSk(s)ds = f?du/<l>(u). If f0"K(s)ds^ß<>du/<j>(u), £(f)
exists on 0 £* < °°, and if /0"X(í)dí <fi?du/<j>(u), f(/)>0 on 0 ^/ < oo.
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To avoid misinterpretation, recall that we have assumed the con-

vergence of the integral f^du/<j>(u).

These arguments, combined with the results of §2, yield the follow-

ing known results.

Theorem 3 (Cooke [5]). If the condition (8) is satisfied, then all

solutions x(t) of (1) with \x(0)\ gr0 exist on the interval [0, T), where

foHs)ds=f~du/<}>(u). If f"\(s)ds Ú f^du/^u), they exist on 0 ̂ t < »,
and if f^\(s)ds<fT°f¡du/<¡>(u), they are bounded on [O, »).

Theorem 4 (Wintner [7]). If the condition (8) is satisfied, and

f"0du/(b(u) = a> t then all solutions of (1) exist on 0 :gi < «>. //, in addi-

tion, f^~K(s)ds < », all solutions of (1) are bounded onO^K».

Theorem 5 (Bihari [2]). If (8) is satisfied, then all solutions x(t)

of (1) with |*(0)| aro obey \x(t)\ SJ-1[J(r0)+fl¡\(s)ds] for all t for
which f'0\(s)dsgf™du/4>(u).

Theorem 6 (Langenhop [6]). // (8) is satisfied, then all solutions

x(t) of (1) with \x(0)\ er» obey \x(t)\ ^J-i[J(ra)-f¿h(s)ds]for all t
for which f^\(s)dsgfó0du/(l>(u).

It follows from Theorem 12 of [3] that any hypotheses which as-

sure the boundedness of all solutions of (9) imply that all solutions of

(1) tend to limits as t—»<». We can obtain some information about

the approach to the limit.

Theorem 7. Suppose that (8) is satisfied with a monotone nonde-

creasing function (¡>(r), and that f"\(s)ds <fôdu/<j>(u). Then any solu-

tion x(t) of (1) tends to a limit x(a>) as /—>«, and

\(s)ds,

where K = supis,<00 tj>(\ x(s) | ) = <j>(| x( ») | ).

Proof. Let r(t) be the maximum solution of (9) with r(0) = | x(Q) |.

By Theorem 3, r(t) tends to a limit r(«>) as /—»<», and by Theorem 2,

we need only prove

(12) r(°o) -r(t) g K I    \(s)ds.

As we have seen, r(t) is given by (11), and thus

(13) r(») = /-^/(ro) + j   \(s)ds~\.
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By the mean value theorem, if 0 ^ a < ß < R, J~l(ß) - /_1(«)

= (ß—ct)(J~l)'(i;) for some £, a<^<ß. By the inverse function theo-

rem, (J-l)'(£) = l/J'(J-1(Ç)). It follows from the definition of J" that

J-l(£)=</>((r), where <r is chosen so that £ = <K<r). Subtraction of (13)

from (11) gives

r(oo) - r(t) = *to | J    Us)ds - J   X(s)ds] = 4>(a) f   X(s)ds.

Here, <r is chosen so that /(<r)=£, where f¿\(s)ds<¡;<fo'k(s)ds. We

can choose T, t < T < oo, so that ^=JoMs)ds, and then J(a) = f"0du/<j>(u)

= fo~K(s)ds. This implies o = r(T), <f>(a) ̂K, and completes the proof

of (12).

4. These arguments can also be used to study bounds for ap-

proximate solutions. A continuous function x(t) is said to be an

«-approximate solution of (1) on an interval if it is differentiable on

the interval except for a finite set of points, and | x'(t) —f(t, x(t)) | <e

on the interval except for this finite set of points. It is understood

that this exceptional set is empty if e = 0. We assume in this section

that / obeys an inequality of the form

(14) \f(t,x)-f(t,y)\   =Sco(i, \x~y\),

in some region 0^t<a, \x\ <A, \y\ <A, \x—y\ <A, where w(t, r)

is continuous and non-negative on 0^t<a, 0^r<A. The following

result is a special case of a theorem of Antosiewicz [l]. Since the

proof of this special case is simpler than the proof of the more general

result, we include it here.

Theorem 8. Let Xi(t) be an ti-approximale solution of (1) on OéKa

(t = l, 2), and let e = ei+e2. Let r,(t) be the maximum solution of

(15) r' = w(t, r) + é

on 0^t<a with r,(0) = \xi(0)—x2(0)\, and let Ç,(t) be the minimum

solution of

(16) f = - u(t, f) - e

on 0g< <a with fe(0) = | ̂ (0) -x2(0) \. If (14) is satisfied, then

(17) Ut) ^ | xi(t) - x2(t) |   ^ u(t),       0áí<í.

Proof. Let m(f) = | xi(t) —x2(t) |. Then

| m'(t) |   £\x{ (t) - xl (t)\   á | f(t, xi(t)) - f(t, x2(t)) |   + ei + 62,

and this implies, using (14) and € = ei+€2, that
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(18) -w(t, m(t)) - e ^ m'(t) ^ u(t, m(t)) + e.

To prove m(t) úrt(t), it suffices to prove m(t) gra(t) for all a>e, since

lima_c+ ra(t) =rt(t) for ig^O. Suppose this inequalty is false for some

a > e, and let a be the greatest lower bound of values of t for which

m(t)>ra(t). Since m(l) and ra(t) are continuous, m(a)=ra(o) and

m'(<j) ^ ri (a).   But   (18)   gives   w(<r, w((t)) + e ^ m'(<r) >t ra' (<r)

= io(<r, ra(cr))+o!. Since a>e, this is a contradiction, which proves

m(t)urt(t).
The other part of (17) is proved in a similar manner. Again, it

suffices to prove m(t) ^Ça(t) for all a>e, since lima^e+ fŒ(/) =f€(í) for

¿3:0. If the inequality is false for some a>e, let a be the greatest

lower bound of values of t for which m(t) <fa(i)- As before, m(&)

= fa((r) and m'(a) úU (<r), but

-co(<r, m(o)) - e g m'(er) g f«' (a) = - u(o-, fa(o-)) - a,

which contradicts a>e. This proves m(t)^t(t) and completes the

proof of (17).
Theorem 8 compares approximate solutions of a system to exact

solutions of an approximate scalar equation. It is often more con-

venient to compare the approximate solutions to exact solutions of an

exact scalar equation with approximate initial conditions. Although

the bounds obtained in this way are less precise, they are considerably

easier to calculate.

Let r(t, ro) be the maximum solution of (3) with r(0, ro)=ro, and

let r,(t) be the maximum solution of (15) with r€(0) =ro.

Theorem 9. If u(t, r) is monotone nondecreasing in r for each fixed t,

then for any fixed e>0, rt(t) gr(t, ro + et) for i3:0.

Proof. From (3) and (15) we obtain

r.(t) = fo +  I    u(s, rt(s))ds + et,
•/ o

r(l, fo + tt) = r0 + tt + I   o>(s, r(s, r0 + et))ds.
J o

Since co is assumed monotone, the theorem will follow from

(19) r,(s) g r(s, r0 + et),       0 g s g t.

If (19) is false, there exists cr, 0^cr<f, such that <x is the greatest

lower bound of values of s for which rt(s)>r(s, r0+€f). Since both

functions are continuous, rt(a) = r(a, r0 + et). But r((cr) = r0

+/Jco(m, rt(u))du+eo-, and r(a, r0+et) = r<¡ + et+fuu(u, r(u, rt> + et))du.
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Since co is monotone, rt(u)^r(u, ro+ei) for O^m^ct, and a<t, (19)

follows.

Theorem 9 has an analogue for lower bounds, proved in the same

way. Let Ç(t, r0) be the minimum solution of (5) with f (0, r0) =fo, and

let £,(£) be the minimum solution of (16) with f€(0)=ro.

Theorem 10. Ifu(t, r) is monotone nondecreasing in rfor each fixed t,

then for any fixed e > 0

Ut) ^ f0, U-tt),       t è 0.

If f(t, x) satisfies a Lipschitz condition, we can take a(t, r) =Kr. In

this case, Theorem 8 and the solution of r' = Kr-\-e give upper and

lower bounds for | Xi(t) —x2(t) |, where »,-(<) is an erapproximate solu-

tion of (1) for*=l, 2, and e=€i+«i.

| *i(0) - x2(0) | er" -~(l- r-")
A

^ | xi(t) - x2(t) I   g  I ̂ (O) - *,(0) | e«> + — (e*< - 1).
it

The upper bound is classical, while the lower bound is due to

Antosiewicz [l]. If we apply Theorem 9, which requires solving

r' = Kr, we obtain

| *i(0) - *i(0) | e~Ki - ete~Kt ^ | xx(t) - x2(t) \

g  | Xl(0) - x2(0) | eKt + eteKt.

These bounds are weaker than the earlier ones by a term which is

0(e<2) for small t.

If / satisfies an inequality

(20) | f(t, x) - f(t, y) |   g X(0<K \x-y\),

application of Theorem 8 would require the solution of r'=\(t)<f>(r)

+ €, which cannot be found explicitly in general. The use of Theorem

9, however, requires only the solution of r' =\(t)<¡>(r), which has been

obtained in §3. This yields the following bounds. The upper bound has

been obtained previously by Bihari [2].

Theorem 11. If x¡(t) are ^-approximate solutions of (I) for *=1, 2,

if e = ei+€2, if \xi(0)—x2(0)\ ^r0, and if f satisfies (20), then

J-1 [j(ro - d) - j  \(s)ds\ g  | xi(t) - x2(t) |

gJ-1\jir9 + tt)+ f Xf»<fcl
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where J(r)=f'0du/4>(u), and J'1 is the inverse function, as in §3.

We can apply Theorem 11 when Xi(t), x2(t) are exact solutions of (1)

with xi(0) =x2(0). This means taking e = 0, r0 = 0. We obtain

/•^[/(O) - f \(s)ds~\ ^ I Xi(t) - *,(<) I   á J-1\J(0)+ f \(s)ds).

If fodu/<j)(u) converges, J(0) is defined, and J(0)=0. The lower

bound becomes vacuous, since J(0) —f£k(s)ds g 0 for / 3t 0, but we still

have an upper bound

(21) I Xl(i) - x2(l) I   á J-1 \j 'x(í)áí] -

If fodu/<t>(u) diverges, J(0) is not defined, and our arguments can-

not be used without considerable modification. In this case, however,

the Osgood theorem shows that x¡.(t) — x2(t) =0 on 0gt<a. The in-

equality (21) gives a bound in the nonunique case.
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