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1. Introduction. Treatises on classical statistical mechanics usually

contain a statement called the principle (or theorem) of equipartition

of energy. Tolman, [6, p. 93], gives a typical formulation of it:

" . . . the mean energy associated with each variable, which con-

tributes a quadratic term to the total energy of the molecule, has the

same value %kT."

In the opinion of the author, equipartitioning is easier to under-

stand and more widely applicable if it is formulated abstractly and

without reference to such notions as molecules, absolute temperature,

and Boltzman's constant. The purpose of this note is to supply such

a formulation and to discuss the logical relation between equiparti-

tioning and metric transitivity. It will, in fact, be shown that equi-

partitioning and metric transitivity are equivalent within certain

contexts where both are meaningful. The half of the equivalence

which asserts that metric transitivity implies equipartitoning will

turn out to be completely obvious in the abstract formulation. This

is the half which corresponds to the principle of equipartition of

energy, since this principle is usually derived after something like

an "ergodic hypothesis" or a "canonical ensemble" has been intro-

duced. The other half of the equivalence is less trivial and more inter-

esting, because it could turn out to be a useful criterion for determin-

ing when a flow is metrically transitive.

The author wishes to thank Dr. V. S. Varadarajan for several help-

ful comments.

2. Manifolds. A natural setting for the problems considered here

would be a measurable space (X, fi) in the sense of [l ] with a c-ideal

of "null sets." However, carrying out the discussion on this level of

generality involves a number of tedious details which can be avoided

in a more limited context. Therefore, the discussion here will be re-

stricted to spaces which are manifolds, and a manifold will always

mean a separable manifold of class C1. There are natural notions of

measurable and null sets on a manifold. A subset 5 of an w-manifold

is said to be measurable (or null) if for every coordinate map <f>r. Ui
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—>Rn, the image 4>¿iSC\Ui) is Lebesgue measurable (or of Lebesgue

measure zero or equivalently of «-dimensional Hausdorff measure

zero) in R". (Since completeness will not be essential in the discus-

sion, it would be equally possible to deal with Borel measurable sets

instead of Lebesgue measurable sets.) It follows easily from a Lemma

of Sard [5, p. 248], that the notion of a null set depends only on the

differentiable structure of the manifold and not on a particular choice

of coordinate systems. Expressions such as "almost everywhere" will

have the normal relation to null sets defined in this way.

If X and F are manifolds, the measurable sets defined on the

product manifold XX F by the process described above are identical

with those defined on it as a product of measurable spaces (cf. [l,

p. 140]). This result follows from the known special case where X and

Fare Euclidean spaces. The following version of the Fubini Theorem,

can also be proved for XXY: A subset SEXX F is a null set if and

only if almost every X-section (F-section) of 5 is an X-null (F-null)

set. (Cf. [l, p. 147].)
More generally, similar remarks hold if B is a G1 fibre space, that

is, B is a manifold satisfying: (i) There are manifolds X and Y which

are called respectively the base space and the fibre, and there is a C1

map ir: B—*X called the projection with the property that, for every

xEX, 7T_1(x) is C^diffeomorphic to F. (ii) There is a countable cover-

ing of X by open sets { r/,:*=l, 2, • • • } and there are C^diffeo-

morphisms <j>i: Î7»X F—>7r_1(í/¿) such that if (x, y)EUiXY, then

w<t>iix, y) =x. It is clear that a set 5C-B is measurable if and only if,

for every ¿=1,2, • • • , 5r>\ir_1(l7l) = </>i(7\), where 7\ is a measurable

subset of UiX Y. A one-sided version of the Fubini Theorem, which

will be called the Fubini Principle, holds for G1 fibre spaces.

Fubini Principle. A subset 5 of a C1 fibre space B with base space

X, fibre F, and projection w: B—*X, is 5-null if and only if for almost

every xEX the set 7r_1(x) is a F-null set.

This principle follows immediately from the corresponding state-

ment for a product manifold and the lemma of Sard which was men-

tioned above.

3. Flows and equipartitioned functions. Let B be a manifold hav-

ing measurable and null sets as explained above, and let LW(B) de-

note the class of essentially bounded, measurable, real valued func-

tions defined on B. Suppose that R is the set of real numbers and that

a collection of open sets {Bt: BtEB, tER} is given and has the

properties: Both O^s^t and O^s^t imply that B,Z)Bt, and

B = [){Btr\B-t: i>0}. Under these conditions, a set of transforma-

tions { Tt: tER, Tt: Bt->B} is called a local C1 flow if £_,= Tt(Bt),



1963] EQUIPARTITIONING AND METRIC TRANSITIVITY 155

T,Tt= TB+t holds whenever both sides are defined, To is the identity,

and the map which sends (b, t)EBXR to Tt(b) is of class C1 on any

submanifold of BXR where it is defined. A function P£P°°(P) is

said to be invariant (a.e.) (or strictly invariant) under \T¡} if for

every tERf(Ttb) =f(b) holds for almost every (or for every) bEBt.

A function fEL°°(B) is said to be constant (a.e.) iif(b)=K holds for

some constant K and almost all bEB.

If B is a C1 fibre space with base space X, fibre F, and projection

x: B—>X, a function /£LM(P) is said to be equipartitioned if there is

a function P£P»(Z) such that {b: bEB, f(b)^F(ir(b))} is a P-null

set. Finally, a local Cl flow { Pt} on P will be said to connect X locally

if, for every point xEX, there is an open neighborhood U with the

property that for every (xlt x2)EUXU, there is a point (61, b2)

EBXB and a tER such that Xi = ir(bt) and Tt(bx)=b2.

The classical example of a local differentiable flow which locally

connects the base space of a C1 fibre space is the geodesic flow on a

Riemannian (or Finsler) w-manifold. Then the C1 fibre space is the

bundle of unit tangent vectors and the fibre is the unit (n— l)-sphere.

The property of connecting the base space locally in this case is essen-

tially the classical theorem that there is a geodesically convex neigh-

borhood of every point in a Finsler manifold, (cf. [4, §21]).

For sharp results on the smoothness that is required of the metric

to assure that the flow is C1, see Hartman [2, part II]. In the physi-

cal literature, there is some discussion of the question whether the

equipartition principle holds only in the case of "quadratic kinetic

energy functions" (i.e., in the Riemannian case). In view of this dis-

cussion, our treatment of much more general cases is perhaps of some

interest.

4. A theorem. The following remark is an immediate consequence

of the definition of an equipartitioned function and is independent of

the properties of flows defined on B.

Remark. If B is a C1 fibre space and if/£L°°(P) is constant (a.e.),

then / is equipartitioned.

When a local flow with suitable properties is defined on B, the fol-

lowing converse statement holds.

Theorem 1. Let B be a C1 fibre space with a connected n-dimensional

base space X and an (n — 1)-dimensional fibre Y. Let { Tt) be a local C1

flow on B which connects X locally. Suppose thatfELK(B) is equiparti-

tioned and invariant (a.e.) under { Tt}. Then f is constant (a.e.).

A lemma will be formulated before Theorem 1 is proved. Assume

the conditions of Theorem 1 and let x: B-^X be the projection. Let
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/ be an invariant equipartitioned function and let FEL°°iX) be

such that fb) = Fiwib)) holds for all bE V, where B- V is a B-nu\\

set. The Fubini Principle implies that there is a subset ZEX such

thatX —ZisanX-nullset and if xEZ, then F(x) =ir-1(x)f>Fis such

that Z7(x) m *-*(*) - F(x) is F-null. Define the set WQZXZQXXX
by the property that (xi, x2)EW if there are points £><G F(xi) and a

iG-R such that bxEBt and Ttibi) = b2. Note that under these condi-

tions /(&») = P(x.) by definition of F(x<).

Lemma. Assume the conditions of Theorem 1. /fee» ez>ery poi»/ xoGX

has an open neighborhood U such that the set UX U— W is UX U-null.

Proof. Let ¿7 be the open set described in the definition of " { Tt}

connects X locally" in the preceding section. Suppose that xEX and

let Iix) denote the interior of the set {(&, t):tER, bEB^^ix)}.

J(x) is an »-dimensional submanifold of B XR, hence the map

G:/(x)—>X defined by Gib, t)=irTtib) is of class C1. The set /(x)

= [ib, t): ib, t)EIix), bEUix)} is a null subset of I(x) if zEZ, by
the Fubini Principle. If 2£(x) =G(/(x)), the dimensions of 7(x) and

X together with the lemma of Sard [5, p. 248], imply that Kix) is

an X-null set for every xEZ. Therefore Kix)i\U is a Z7-null set for

every xEZ.

Now define sets Ui and t/2 by Î7i={(xi, x2):(xi, x2)EUX U,

X2G-K(xi)} and ¿72={(xi, x2):(xi, x2)EUXU, XiEKix2)}. Since

Kix)C\U is a L7-null set for all xEZ and U—Z is a ¿7-null set, the

Fubini Principle implies that each set Z7j is a Í7X ¿7-null set. Thus

Ui*U Ui is a UX U null set.
The proof of the Lemma is completed by observing that Í7X U

— WE f7iW ¿72. For if (xi, x2) G ¿7X Í7, by definition of U, there exists

a (&i, b2)EBXB and a tER such that x< = 7r(Z>j) and /«(¿»i) =b2, hence

T-tib2)=bi. Moreover, if (xi, X2)G^F> the definition of W implies

that either x2EKixi) or xiG-Kfe). In the first case, (xi, x2)G Ui, and

in the second (xi, x2) G Uit hence UXU- WE Ui\J U2.

5. Proof of Theorem 1. Let / be an invariant and equipartitioned

function. It is to be shown that / is constant almost everywhere on

B. By a lemma of von Neumann [3, p. 27], the function / can be

modified on a 73-null set in such a way that it becomes strictly in-

variant. The modified function will still be equipartitioning, hence it

can be supposed that / is strictly invariant.

Suppose that (xi, X2)GIF and r((&i) = ¿»2 where ¿»<GF(x,). The

strict invariance of / implies that /(&i) =fib2), hence P(xi) = Fix2) by

the remark just before the statement of the Lemma. Since UXU—W
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is a null set, the Fubini Principle implies that there is an xoEZCMJ

such that N={x:xEZr\U, (x0, x)^W\ is a Z7-null set. Thus if

xEZr\U-N, (*o, x)EW, and F(x) = F(x0). Since U-(ZC\U-N)

is a null set, the Fubini Principle then implies that/(è) = F(x) = P(xo)

=/(6o) holds for almost every ô£x-1(i/). From this it follows easily

that f(b) =/(6o) for almost all ¿>£P, since X is connected and there

is an open set U corresponding to every point of X.

6. Metric transitivity and equipartitioning. If B is a manifold and

{ Tt} is a local Cl flow on B, {Tt} is said to be metrically transitive if

every invariant (a.e.) function/£P°°(P) is constant (a.e.). If B is a

C1 fibre space, { Tt\ will be said to be equipartitioning if every invari-

ant (a.e.) function/£L°°(P) is equipartitioned. This definition seems

to express the essential parts of the idea of equipartitioning as it is

used by physicists. This idea appears to be that "in equilibrium" or

"on the average" the distribution of velocities must be independent

of direction. In our formulation, the invariance of / corresponds to

being in equilibrium or to being a time average; the constancy of/

on almost all fibres corresponds to independence of direction. Now

the remark and the theorem of the preceding paragraph can be re-

formulated as follows.

Theorem 2. Let B be a C1 fibre space with a connected n-dimensional

base space X and an (n — 1)-dimensional fibre Y. Let {Tt} be a local

C1 flow on B which connects X locally. Then the flow { Tt} is metrically

transitive if and only if it is equipartitioning.
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