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VANISHING CENTRAL DIFFERENCES

RICHARD F. DeMAR

Given a sequence {an}T-o of complex numbers, a number of theo-

rems have been proved concerning implications of the vanishing of

certain differences Anao if the given sequence satisfies some growth

restriction. The first such result, proved by Agnew [l], states that if

{a„} is bounded and A2na0 = 0 for all n, then an = 0 for all ». If all the

odd differences are zero, the sequence is constant. Fuchs [ô] proved

the following: Let a„ = o(nk) for some positive number k, and let n¡

be a subsequence of the positive integers such that if n(R) is the

number of n,-<R, then n(R)^R/2 for R>R0. If A?a0 = 0 for all n¡,

then an = p(n) where p(x) is a polynomial of degree less than k.

Buck [4] assumed only that lim sup |o„| 1/n<l and A"ao = 0 for all n

belonging to a set of positive integers of density d>\ and proved

there is a function / of exponential type whose growth function h(B)

satisfies Ä( + 7r/2)<7r such that/(«)=a„ for all n. In this paper, we

show that if the given sequence is extended to {<zn] "—» by letting

o_n = ßn, then the vanishing of certain of the even central differences

A2na_„ has similar implications. Or, letting a_„= — an_i, vanishing of

odd differences A2n-1£>_n gives similar results.

If G is a connected set, let K[G] denote the class of all entire func-

tions of exponential type whose conjugate indicator diagrams D(f)

are contained in G. If G is the rectangle {x+iy| |x| ^a; \y\ úc},

then K[a, c] will be used for X[G]. Let C2,„ denote the polynomial

z(z-l) • ■ • (z-n + l)/n\.

Certain results concerning the sequence {<Cn} of Stirling func-

tional given by £„(/)=An/( — n/2) will be needed. These functionals
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have the representation

A"/(-»/2) = —; f ie"2 - ef/»)»F(f)¿f
2iriJ r

where F is the Borel (Laplace) transform of / and V is any simple

contour enclosing the conjugate indicator diagram D(f). Let B be

the set of all f satisfying \eV2 — etl2\ <2. Then B is a convex, lens-

shaped region, symmetric about the origin whose boundary has

vertices at ±tí and crosses the real axis at ±log(3 + 2v'2). For/ in

K[B], Buck [3] showed that

00

f(z) = E A«/(-«/2)(z/»)C,+„/2-i,n-i,
n—0

convergent for all z. The author [5 ] showed that for a given sequence

{c„} of complex numbers, there is a function /in K[B] such that

A"/(-«/2)=c„; w = 0, 1, 2, • • • if and only if lim sup |cn|1'n<2. If

we let G(t) = 2^cntn, then / has the representation

1    f  G(<)
(1) /(z) = — I   -11 exp[2z sinh-1 l/(2/)]d*

2iri •/ a    ¿

where £ is a simple contour contained in the region of regularity of

G and enclosing the disk \t\ ^f. Then the conjugate indicator dia-

gram D(f) is contained in the convex hull of the image of E under the

map f = 2 sinh"1 1/(2/).

Theorem 1. Let \bn\ñ_00 be an even sequence of complex numbers

such that lim sup ¡ bn |1/n á 1. Suppose there is a set A of positive integers

of  density   d > 0   such   that for   all   n   in   A,   A2"Z>_„ = 0.   Then

^lA.2nb-„(z/2n)Cz+n-i,n-i converges to an even function f in K[B] and

f(n)=bn;n = 0, ±1, ±2, ■ ■ ■ .

We need the following lemma.

Lemma. For a sequence [ bn} „- - ., define Q(t) formally by

Qit) = Z ¿ Cn,kb-n+2kf
n—0 k-0

and define P(z) by P(z) = (l+2z)~1Q(z/(l+2z)). Then formally P(z)

= 2>2»&_nz».

Proof.1 Let E be an operator defined for a sequence a— \ak\ by

E(a)(k)=a(k + 1). Then A = £-l, and we have

1 This proof was suggested by Professor R. C. Buck.
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ö(0   =   E E Cn.kb-n+ilct"

= 2>£-» £ C„,*£2*ô0
n-0 *-0

00

= E HE + Fr^bo
n-0

1
=-bo-

1 - t(E + Fr1)

1
Ç(z/(1 + 2z)) = (1 + 2z)-be
V l-z(E-2 + E~l)

oo

= (1 + 2z) 5Z z"(£ - 2 + E-^-io
n-0

00

= (1 + 2z) S A2n6_„í». Q.E.D.
n-0

Proof of Theorem 1. Since

lim sup I bn\Un Û 1,     lim sup ¿_, Cn,kb-n+2k <■ 2.

Thus Q(t) is regular in the disk \t\ < J. Then from its definition P(z)

is regular for |z/(l+2z)| <5 or \z\ <|z+|| which is the set of all z

whose real part is greater than — J. Let G(z)=P(z%)= TpA2nb-nz2n.

Then G is regular for all z such that (R(z2) > — \ ; i.e., for z in the region

containing the origin and bounded by the equilateral hyperbola

y2 — x2 = \ where z = x+iy. Let r0 be the radius of convergence of

^A2nZ>_„z2n. Then r0^s. Since G is even, G(z)= ^c„zn where

C2n+i = 0 and c2n = A2"Z>_n. Then from the hypothesis, c„ = 0 for all »

belonging to a set of density d'>\. Thus, by Pólya's density theorem

[7], G has a singularity on every arc of \z\ =r¡¡ of opening 2ir(l— d)

and this is less than it. But if ra = \, the only possible singularities are

at i/2 or —i/2; so ro>|. Then, by the results on Stirling functionals

quoted earlier, there is a function /in K[B] such that A2nf( — n)

= A2n£>_„ for all n, and /(z) = X}A2n£>-n(z/2»)Ci+„_i,„_i convergent for

all z. Since (z/2w)C2+„_i,„_i is even for each n, f is even. It can be

shown by induction that/(w) = 2>„ ; » = 0, ±1, ±2, • • • , using the

fact that A2nf(-n) = A2nè_„ for each ». Q.E.D.

Theorem 2. /» Theorem 1, if d~^\, then f is of zero type.

Proof. If d«=i, then G(z)= EA2n2>-nZ2n has zero coefficients for
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all » belonging to a set of positive integers of density at least f. Then,

by Pólya's density theorem, G has a singularity on every arc of its

circle of convergence of opening 7r/2. But G is regular for all z = rei$

with 0^7r/4, so G is entire. Then in representation (1) of /, the con-

tour E can be taken as a circle of arbitrarily large radius, so that its

image under the map f = 2 sinh-1 1/(2/) can be made to lie in an

arbitrarily small disk about the origin. Therefore D(f) is the origin,

i.e.,/ is of zero type. Q.E.D.

Corollary 3. In Theorem 1, if d^% and bn = o(nk) as »—><» for

some k>0, then f is a polynomial of degree less than k.

Proof. The function / is of zero type and since / is even, f(n)

= o(\n\k) as n—>± » ; so / is a polynomial of degree less than k

[2, p. 183].

Corollary 4. In Corollary 3, if \bn] is bounded then it is a constant

sequence.

Thus we have obtained theorems analogous to those of Buck,

Fuchs, and Agnew referred to at the beginning.

Since, for an odd sequence {cn)ñ*_oo, A2nc_„ = 0 for all n, we have

the following:

Corollary 5. If any bounded sequence {bn}ñ_oo has bo = 0 and

A2nb-n = 0 for all n belonging to a set of positive integers of density

d^\, then \bn] is an odd sequence.

For a sequence {&„}"__«, such that &_„= — bn-i; »=1, 2, 3, • ■ • ,

we obtain theorems identical with those above except that the even

differences are replaced by odd differences A2n-1ô_n and the interpolat-

ing function is an odd function. The proofs of these theorems are

almost the same as the proofs of the above theorems.
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