- 2. —, Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193-217.
- 3. G. Herglotz, Über Potenzreihen mit positivem reellen Teil im Einheitskreis, Ber. Sachs. Akad. Wiss. Leipzig Math.-Phys. Kl. 63 (1911), 501-511.
- 4. C. Loewner, Untersuchungen über die Verzerrung bei Konformen Abbildungen des Einheitskreises |z| <1 die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Ber. Sachs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69 (1917), 89-106.
 - 5. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.
- 6. R. Nevanlinna, Eindeutige Analytische Funktionen, J. W. Edwards, Ann Arbor, Michigan, 1944.

University of Kentucky

VANISHING CENTRAL DIFFERENCES

RICHARD F. DEMAR

Given a sequence $\{a_n\}_{n=0}^{\infty}$ of complex numbers, a number of theorems have been proved concerning implications of the vanishing of certain differences $\Delta^n a_0$ if the given sequence satisfies some growth restriction. The first such result, proved by Agnew [1], states that if $\{a_n\}$ is bounded and $\Delta^{2n}a_0=0$ for all n, then $a_n=0$ for all n. If all the odd differences are zero, the sequence is constant. Fuchs [6] proved the following: Let $a_n = o(n^k)$ for some positive number k, and let n_i be a subsequence of the positive integers such that if n(R) is the number of $n_i < R$, then $n(R) \ge R/2$ for $R > R_0$. If $\Delta_i^n a_0 = 0$ for all n_i , then $a_n = p(n)$ where p(x) is a polynomial of degree less than k. Buck [4] assumed only that $\limsup |a_n|^{1/n} < 1$ and $\Delta^n a_0 = 0$ for all nbelonging to a set of positive integers of density $d > \frac{1}{3}$ and proved there is a function f of exponential type whose growth function $h(\theta)$ satisfies $h(\pm \pi/2) < \pi$ such that $f(n) = a_n$ for all n. In this paper, we show that if the given sequence is extended to $\{a_n\}_{n=-\infty}^{\infty}$ by letting $a_{-n} = a_n$, then the vanishing of certain of the even central differences $\Delta^{2n}a_{-n}$ has similar implications. Or, letting $a_{-n}=-a_{n-1}$, vanishing of odd differences $\Delta^{2n-1}b_{-n}$ gives similar results.

If G is a connected set, let K[G] denote the class of all entire functions of exponential type whose conjugate indicator diagrams D(f) are contained in G. If G is the rectangle $\{x+iy \mid |x| \leq a; |y| \leq c\}$, then K[a, c] will be used for K[G]. Let $C_{z,n}$ denote the polynomial $z(z-1) \cdot \cdot \cdot (z-n+1)/n!$.

Certain results concerning the sequence $\{\mathfrak{L}_n\}$ of Stirling functionals given by $\mathfrak{L}_n(f) = \Delta^n f(-n/2)$ will be needed. These functionals

Presented to the Society, January 24, 1961, under the title, A theorem on vanishing differences; received by the editors November 24, 1961 and, in revised form, December 12, 1961.

have the representation

$$\Delta^n f(-n/2) = \frac{1}{2\pi i} \int_{\Gamma} (e^{\xi/2} - e^{\xi/2})^n F(\zeta) d\zeta$$

where F is the Borel (Laplace) transform of f and Γ is any simple contour enclosing the conjugate indicator diagram D(f). Let B be the set of all ζ satisfying $|e^{f/2}-e^{f/2}|<2$. Then B is a convex, lensshaped region, symmetric about the origin whose boundary has vertices at $\pm \pi i$ and crosses the real axis at $\pm \log(3+2\sqrt{2})$. For f in K[B], Buck [3] showed that

$$f(z) = \sum_{n=0}^{\infty} \Delta^n f(-n/2)(z/n) C_{s+n/2-1,n-1},$$

convergent for all z. The author [5] showed that for a given sequence $\{c_n\}$ of complex numbers, there is a function f in K[B] such that $\Delta^n f(-n/2) = c_n$; $n = 0, 1, 2, \cdots$ if and only if $\limsup |c_n|^{1/n} < 2$. If we let $G(t) = \sum c_n t^n$, then f has the representation

(1)
$$f(z) = \frac{1}{2\pi i} \int_{R} \frac{G(t)}{t} \exp[2z \sinh^{-1} 1/(2t)] dt$$

where E is a simple contour contained in the region of regularity of G and enclosing the disk $|t| \le \frac{1}{2}$. Then the conjugate indicator diagram D(f) is contained in the convex hull of the image of E under the map $\zeta = 2 \sinh^{-1} 1/(2t)$.

THEOREM 1. Let $\{b_n\}_{n=-\infty}^{\infty}$ be an even sequence of complex numbers such that $\limsup |b_n|^{1/n} \le 1$. Suppose there is a set A of positive integers of density d > 0 such that for all n in A, $\Delta^{2n}b_{-n} = 0$. Then $\sum \Delta^{2n}b_{-n}(z/2n)C_{z+n-1,n-1}$ converges to an even function f in K[B] and $f(n) = b_n$; $n = 0, \pm 1, \pm 2, \cdots$.

We need the following lemma.

LEMMA. For a sequence $\{b_n\}_{n=-\infty}^{\infty}$, define Q(t) formally by

$$Q(t) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} C_{n,k} b_{-n+2k} t^{n}$$

and define P(z) by $P(z) = (1+2z)^{-1}Q(z/(1+2z))$. Then formally $P(z) = \sum \Delta^{2n} b_{-n} z^n$.

PROOF. Let E be an operator defined for a sequence $a = \{a_k\}$ by E(a)(k) = a(k+1). Then $\Delta = E-1$, and we have

¹ This proof was suggested by Professor R. C. Buck.

$$Q(t) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} C_{n,k} b_{-n+2k} t^{n}$$

$$= \sum_{n=0}^{\infty} t^{n} E^{-n} \sum_{k=0}^{n} C_{n,k} E^{2k} b_{0}$$

$$= \sum_{n=0}^{\infty} t^{n} (E + E^{-1})^{n} b_{0}$$

$$= \frac{1}{1 - t(E + E^{-1})} b_{0} \cdot \frac{1}{1 - z(E - 2 + E^{-1})} b_{0}$$

$$= (1 + 2z) \sum_{n=0}^{\infty} z^{n} (E - 2 + E^{-1})^{n} b_{0}$$

$$= (1 + 2z) \sum_{n=0}^{\infty} \Delta^{2n} b_{-n} z^{n}. \qquad Q.E.D.$$

PROOF OF THEOREM 1. Since

$$\lim \sup \left| b_n \right|^{1/n} \leq 1, \quad \lim \sup \left| \sum_{k=0}^n C_{n,k} b_{-n+2k} \right| \leq 2.$$

Thus Q(t) is regular in the disk $|t| < \frac{1}{2}$. Then from its definition P(z)is regular for $|z/(1+2z)| < \frac{1}{2}$ or $|z| < |z+\frac{1}{2}|$ which is the set of all z whose real part is greater than $-\frac{1}{4}$. Let $G(z) = P(z^2) = \sum \Delta^{2n} b_{-n} z^{2n}$. Then G is regular for all z such that $\Re(z^2) > -\frac{1}{4}$; i.e., for z in the region containing the origin and bounded by the equilateral hyperbola $y^2-x^2=\frac{1}{4}$ where z=x+iy. Let r_0 be the radius of convergence of $\sum \Delta^{2n} b_{-n} z^{2n}$. Then $r_0 \ge \frac{1}{2}$. Since G is even, $G(z) = \sum c_n z^n$ where $c_{2n+1}=0$ and $c_{2n}=\Delta^{2n}b_{-n}$. Then from the hypothesis, $c_n=0$ for all nbelonging to a set of density $d' > \frac{1}{2}$. Thus, by Pólya's density theorem [7], G has a singularity on every arc of $|z| = r_0$ of opening $2\pi(1-d)$ and this is less than π . But if $r_0 = \frac{1}{2}$, the only possible singularities are at i/2 or -i/2; so $r_0 > \frac{1}{2}$. Then, by the results on Stirling functionals quoted earlier, there is a function f in K[B] such that $\Delta^{2n}f(-n)$ $=\Delta^{2n}b_{-n}$ for all n, and $f(z)=\sum\Delta^{2n}b_{-n}(z/2n)C_{z+n-1,n-1}$ convergent for all z. Since $(z/2n)C_{z+n-1,n-1}$ is even for each n, f is even. It can be shown by induction that $f(n) = b_n$; $n = 0, \pm 1, \pm 2, \cdots$, using the fact that $\Delta^{2n}f(-n) = \Delta^{2n}b_{-n}$ for each n. Q.E.D.

THEOREM 2. In Theorem 1, if $d \ge \frac{1}{2}$, then f is of zero type.

PROOF. If $d \ge \frac{1}{2}$, then $G(z) = \sum \Delta^{2n} b_{-n} z^{2n}$ has zero coefficients for

all *n* belonging to a set of positive integers of density at least $\frac{3}{4}$. Then, by Pólya's density theorem, *G* has a singularity on every arc of its circle of convergence of opening $\pi/2$. But *G* is regular for all $z=re^{i\theta}$ with $\theta \leq \pi/4$, so *G* is entire. Then in representation (1) of *f*, the contour *E* can be taken as a circle of arbitrarily large radius, so that its image under the map $\zeta=2$ sinh⁻¹ 1/(2t) can be made to lie in an arbitrarily small disk about the origin. Therefore D(f) is the origin, i.e., *f* is of zero type. Q.E.D.

COROLLARY 3. In Theorem 1, if $d \ge \frac{1}{2}$ and $b_n = o(n^k)$ as $n \to \infty$ for some k > 0, then f is a polynomial of degree less than k.

PROOF. The function f is of zero type and since f is even, $f(n) = o(|n|^k)$ as $n \to \pm \infty$; so f is a polynomial of degree less than k [2, p. 183].

COROLLARY 4. In Corollary 3, if $\{b_n\}$ is bounded then it is a constant sequence.

Thus we have obtained theorems analogous to those of Buck, Fuchs, and Agnew referred to at the beginning.

Since, for an odd sequence $\{c_n\}_{n=-\infty}^{\infty}$, $\Delta^{2n}c_{-n}=0$ for all n, we have the following:

COROLLARY 5. If any bounded sequence $\{b_n\}_{n=-\infty}^{\infty}$ has $b_0=0$ and $\Delta^{2n}b_{-n}=0$ for all n belonging to a set of positive integers of density $d \ge \frac{1}{2}$, then $\{b_n\}$ is an odd sequence.

For a sequence $\{b_n\}_{n=-\infty}^{\infty}$ such that $b_{-n}=-b_{n-1}$; $n=1, 2, 3, \cdots$, we obtain theorems identical with those above except that the even differences are replaced by odd differences $\Delta^{2n-1}b_{-n}$ and the interpolating function is an odd function. The proofs of these theorems are almost the same as the proofs of the above theorems.

BIBLIOGRAPHY

- 1. R. P. Agnew, On sequences with vanishing even or odd differences, Amer. J. Math. 66 (1944), 339-340.
 - 2. R. P. Boas, Entire functions, Academic Press, New York, 1954.
 - 3. R. C. Buck, Interpolation series, Trans. Amer. Math. Soc. 64 (1948), 283-298.
- 4. ——, On admissibility of sequences and a theorem of Pólya, Comment. Math. Helv. 27 (1953), 75-80.
- 5. R. F. DeMar, Existence of interpolating functions of exponential type, Trans. Amer. Math. Soc. 105 (1962), 359-371.
- 6. W. H. J. Fuchs, A theorem of finite differences with application to the theory of Hausdorff summability, Proc. Cambridge Philos. Soc. 40 (1944), 188-198.
- 7. G. Pólya, Über Lucken und Singularitäten von Potenzreihen, Math. Z. 29 (1929), 549-640.

MIAMI UNIVERSITY