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Theorem 4.2. A complete regular ring S is continuous if and only if

5¡ = 5r.

By [3, Theorem 3] every continuous regular ring is (both left and

right) self injective if it contains no nonzero strongly regular ideals.

Hence we have

Theorem 4.3. Let S be a complete regular ring, and suppose that S

does not contain any nonzero strongly regular ideals. Then 5¡ = 5r (if and)

only if S is self injective, that is, S=Si = Sr.
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INVERSE LIMITS OF SOLVABLE GROUPS

ETHAN D. BOLKER

In this paper we generalize to groups of Galois type some results

of P. Hall on finite solvable groups [l; 2; 3]. We need, in a modified

form, some results of van Dantzig: the definition of supernatural

numbers (which are related to van Dantzig's universal numbers) and

Theorem 5, which he proved for ordinary ¿>-Sylow subgroups [6].

Lemmas 1 and 4 and the method of proof in Theorem 5 are due to

Täte [S].

A topological group G is of Galois type if it is compact and totally

disconnected. In any Galois type group the open normal subgroups

form a neighborhood base at the identity. Every closed subgroup is

the intersection of the open subgroups containing it [4]. Whenever

M and N are open normal subgroups of G and NZ)M we shall write

0jv for the natural homomorphism of G/M onto G/N (these quotient

groups are finite) and <£# for the natural homomorphism of G onto

G/N. G is the inverse limit of the groups {G/N}, N ranging over the

open normal subgroups of G. Conversely, the inverse limit of finite

groups is of Galois type.
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A supernatural number is a formal product of powers of primes.

Infinitely many factors are permitted, with exponents 1, 2, • • • , w.

Supernatural numbers are multiplied by addition of exponents. If x

is a set of primes and S a supernatural number we say

8 and t are coprime when p £ t implies p \ 8,

ir | 8 (ir divides 5) when p £ x implies p \ 8,

81 T when   p \  8 implies p £ ir.

Whenever G is a group of Galois type and 5 is a closed subgroup

of G we define the index of 5 in G ([G:5]) as the supernatural num-

ber which is the least common multiple of the integers [G: U] as U

ranges over open subgroups of G containing 5. Then [G:5] is also

the l.c.m. { [G'^A7]} as N ranges over the open normal subgroups of

G. The order of G,o(G), is [G: l]. G is a x group if o(G) \ x. A closed

subgroup 5 of G is a x-Sylow subgroup if x and [G:5] are coprime

and 5 is a 7T group.

1. Lemma. If 5 and T are closed subgroups of the Galois type group

G and S contains T then [G: T] = [G:S] [S: T].

Proof. For N an open normal subgroup of G we know [G:FiV]

= [G:SN][SN:TN] and [SN:TN]= [S:T(Sf~\N)]. Taking the
least common multiples as N varies we see that [G:P] divides

[G:5][5:P], so we need only show that [G:5][5:P] divides
[G:P]. Suppose that for m and &<<», pm divides [G:5] and pk

divides [5: F]. It follows that there are open normal subgroups Nx

and N2 of G for which pm\ [G:SNx] and pk\ [S:T(SnN2)]. Let
N=Nxr\N2. Then pm\ [G:SN] and pk\[S:T(SnN)]. Therefore

pm+k ¿¡vides [GiPA7] and thus also divides [G:P]. Therefore

[G:5][5:P] divides [G:T].   q.e.d.

2. Corollary. A subgroup S is a ir-Sylow subgroup for some x if

and only if its order and index are coprime.

3. Corollary. One r-Sylow subgroup cannot strictly contain another.

Proof. Let 5 and T be x-Sylow subgroups for which PC5. Then

o(5) = o(P)[5:P] implies [5:P] divides x, but [G:T]=[G:S][S:T]
implies [5: P] and x are coprime, which is a contradiction unless

S=T.

4. Lemma. // 5 is the intersection of a decreasing family {Sa} of

closed subgroups of G then [G:5] = /.c.wi. {[G:5a]}.

Proof. Lemma 1 implies [G:5]= [G:5a][5„:5] for all a, hence
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l.c.m. { [G:50]} divides [G:5]. Conversely, if m< » and pn\ [G:S]

then there is an open normal subgroup N for which pm\ [G:5JV].

Since G — SN is compact and disjoint from 5 = fl5a there is a finite

intersection Sai i\ • • • i\ Sak contained in SN. However

Saif~} ■ • ■ ¡^Sak equals Sak since the 5„ are decreasing. Therefore

Pm\ [G:Sak], hence pm\ l.c.m. {[G:5«]}. Thus [G: S] = l.c.m. {[G:5«]}.

q.e.d.
A group of Galois type is projectively solvable if it is the inverse

limit of finite solvable groups.

5. Theorem. Let G be projectively solvable. For each x dividing o(G),

G has ir-Sylow subgroups, any two are conjugate, and any t subgroup of

G is contained in one of them.

Proof. Let 3d be the set of closed subgroups 5 of G for which

[G:S] and it are coprime. GG3TC and 9ÏÏ is partially ordered by inclu-

sion. Lemma 4 shows that the intersection 5 of a maximal chain from

3TC is minimal in 311. We shall show such an 5 is necessarily a x group.

Let N be an open normal subgroup of G. We must show o(S/SC\N)

divides it. Since G/N is solvable so is S/SC\N, which is isomorphic

to SN/N. Choose a x-Sylow subgroup W of S/SC\N (Hall, [l]).

Let T be the inverse image in 5 of IF under (bsntf. T is closed in G and

both open and closed in 5. [G:/] = [G:5][5:/]. [G:S] and ir are

coprime since 5G3ÍI. Since x and [5/5r\A7': W], which equals [5: T],

are coprime, we see that [G: T] and ir are coprime. Therefore PG3TÍ.

Since TC5 and 5 is minimal in 3TC, T=S. Therefore S/SC\N

= T/Si\N=W, but we know o(TF) divides it. Therefore 5 is a ic-
Sylow subgroup of G.

Now let T be any ir subgroup of G. For each open normal sub-

group N of G the set Kn of members of G whose images a under fa

satisfy a~lfaiT)a EfaiS) is closed and nonempty (Hall, [l]). NQM
implies KnQKm, hence {KN} has the finite intersection property. If

tEV[Kn then t-17tC5. Therefore any w group has a conjugate in-

side a given 7r-Sylow subgroup. Corollary 3 then implies any two

ir-Sylow subgroups are conjugate,   q.e.d.

6. Corollary. Let 31(5) be the normalizer of the r-Sylow subgroup

S. Then [G: 31(5)] and t are coprime since 5C9l(5).

Theorem 5 guarantees the existence of x-Sylow subgroups. Zorn's

lemma was required in the proof. Once this existence has been estab-

lished, however, the 7r-Sylow subgroups can be characterized some-

what more constructively.

7. Theorem. Each ir-Sylow subgroup S of G may be written as the
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inverse limit of groups \ Sn } where Sn is a ir-Sylow subgroup of G/N

and 0J|f maps Sm onto Sn. Conversely, if { Sn } is a family of subgroups

of the G/N with these properties then the inverse limit S of {Sn} is a

ir-Sylow subgroup of G.

Proof. Any closed subgroup 5 of G may be written as the inverse

limit of {Sn} where Sn = SN/N, which is isomorphic to S/SC\N.

Then <¡$ maps Sm onto Sn. The argument in Theorem 5 shows that

Sn is a x-Sylow subgroup of G/N if 5 is a x-Sylow subgroup of G.

Conversely, if each Sn is a x-Sylow subgroup then 5 is a x group,

hence 5 is contained in some x-Sylow subgroup 5'. Then S'N/N must

equal SN/N for all N, hence S=S'.   q.e.d.
We can now generalize Hall's results on Sylow systems [3]. Let G

be projectively solvable, xg the set of primes dividing o(G). Choose a

T'a— {p\-Sylow subgroup (p-complement) Cp for each pE^a. For

SCxcj let 5z = np€2 Cp. We set Sro = G. Then S= {52} is a Sylow

system of G.

8. Theorem. 5z is a X-Sylow subgroup of G.

Proof. Each Cp is the inverse limit of ^-complements of the groups

G/N (Theorem 7). Hall's theorem [3] tells us that the intersections

of the ^-complements for ¿>£S are S-Sylow subgroups of the groups

G/N. These S-Sylow subgroups are mapped onto each other by the

<t>N, hence their inverse limit is a S-Sylow subgroup which is easily

proved equal to 5s. q.e.d.

9. Lemma. If {Sa} is a family of subsets of xg then Snxa — ̂ Ssa.

This follows trivially from the definition of 5s.

10. Theorem. 525a = 52ua.

Proof. If <tô£525a each of its projections 0jv(crS) lies in the product

of a S-Sylow subgroup and a A-Sylow subgroup of G/N (Theorem 7).

By Hall's theorem [3] this product is a SWA-Sylow subgroup of

G/N, and is in fact <£at(52Ua). Hence 525aC52Ua.

To prove the reverse inclusion, suppose t£52Ua. Then for each

open normal subgroup N, #jv(t) £ (¡>n(Sxua), which equals

<I>n(SjÍ)<I>n(Sa). Thus there are elements (TnESs and 5#£5a for which

<¡>N(ffN0¡f) = <&v(t). This shows that the set Kn of those members n of

525a for which 4>n(iÍ)=^>n(t) is nonempty. Kn is closed since 525a

is closed, even though we do not yet know it is a subgroup. \Kn\

has the finite intersection property since for open normal subgroups

Nx,- ■ ■ , Njt nKNiDKr\N%. Choose PEC\KN. For all N, <¡>n(p) = <j>n(t)
implies p = t, but we know p£5z5A. Therefore 52UaC525a.  q.e.d.
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11. Corollary. 5z5¿ = 5jua = S^Ss, i.e., S consists of commuting

subgroups. In particular, {5(p)} is a commuting family of ordinary

p-Sylow subgroups.

12. Corollary.   Theorem  10 is true for infinite products, i.e.,.

[SxaSfy • ■ ■ ]_ = 5usa/or any family {2a} of subsets of it a.

Proof. By 5za5s/3 • • ■ we mean the set of products of finitely many

members of U52a. Since the Ssa commute pairwise, this set, and

hence its closure, 5, is a subgroup. 5 is the smallest closed subgroup

containing 5sa for all a. Since 5u2aD5z„ for all a we have 5uzaD5.

It will suffice to prove that 5 is a U2a-Sylow subgroup, for then we

may apply Theorem 8 and Corollary 3. 5 is a U2a group since it is

contained in one. Since [G:5za] and 2a are coprime and [G:5sa]

= [G:5][5:5za] we see that for each a, [G:S] and 2« are coprime.

Thus [G:S] and U2a are coprime and 5 is a U2«-Sylow subgroup,

q.e.d.
By combining the results 8 through 12 we prove

13. Theorem. For each projectively solvable group G there is a lattice

injection of the set of subsets of wq into the lattice of closed subgroups of

G. Its range is commutative and consists of one Sylow subgroup of each

type. The lattice join corresponds to set multiplication.

We now study the family of Sylow systems. The Sylow system

t_1St generated by the r-conjugates of the ^-complements in S is

said to be conjugate to S. If S* = t~1St then S* = T_1S^r for all 2Cttg.

14. Conjugacy theorem. Any two Sylow systems S, S* are conju-

gate.

Proof. For any finite set [pi, ■ ■ ■ , p*} Et a there is a rGG for

which t~1CPít=C%., i^n. We prove this by induction. The proof is

the same as Hall's [3]. For »= 1 the statement is Theorem 5. Assume

that conjugation with r takes CPi into C^, i^n — l. Since Sp'nCv'n

= G= C*nSv'n any conjugate of C%n may be obtained by using an ele-

ment of S*n. In particular, there is a aES*n for which ff~1(f~1CPnT)(r

= C*n. Since S^nECt when p9^pn we can conclude that ÍTa)~1CPiira)

= CPi for i£s».

Let Kp be the coset of the normalizer of Cp which takes Cp to C*.

KP is closed. The induction above shows {Kp\ has the finite inter-

section property. Any t G C\Kp clearly satisfies our requirements, q.e.d.

15. Embedding theorem. If 3 is a commuting set of subgroups of

G such that each TG3 is a irr-Sylow subgroup then there is a Sylow sys-

tem S containing 3.
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Proof. For each pE^a let Tp be the closure of the product of those

P£3 for which p\o(T). (If there are no such T let Tp= {e}.) The

argument in Corollary 12 shows that Tp is a group. Tp is the inverse

limit of the product in each G/N of the groups <¡>n(T) for which

p\o(T), therefore p\o(Tp). Using Theorem 5, choose a ^-complement

Cp containing Tp.

Let S be the Sylow system generated by {Cp\. For each P£3,

5xr contains T since STT is the intersection of the Cp for which

PÔltït, i.e., for which TETPECP. Since both T and S*T are xr-

Sylow subgroups they are equal, hence 3CS.   q.e.d.

16. Subgroup theorem. If H is a closed subgroup of G and 3 is a

Sylow system for H then there is a Sylow system S of G for which

3 = &C\H, i.e., each P£3 is SC\H for some 5£S.

Proof. Let {C¿} be the ^-complements in 3. For each PEtth

choose a ^-complement Cp (in G) which contains Cp . If pE^H choose

a ^-complement Cp containing H. Then the Sylow system generated

by \CP] will do. Suppose P£3. Then SXTC\H contains P and is a

xr group. [H:T]=[H:S,Tr^H][SWTr\H:T] and Pa xr-Sylow sub-

group imply [H:Sl7,r\H] and x? are coprime. Thus S^i^H is a

xr-Sylow subgroup and therefore equals P.   q.e.d.
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