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THEOREM 4.2. A complete regular ring S is continuous if and only if
S:=3S

By [3, Theorem 3] every continuous regular ring is (both left and
right) self injective if it contains no nonzero strongly regular ideals.
Hence we have

THEOREM 4.3. Let S be a complete regular ring, and suppose that S
does not contain any nonzero strongly regular ideals. Then S,=3, (if and)
only if S is self injective, that is, S=5,=15,.
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INVERSE LIMITS OF SOLVABLE GROUPS
ETHAN D. BOLKER

In this paper we generalize to groups of Galois type some results
of P. Hall on finite solvable groups [1; 2; 3]. We need, in a modified
form, some results of van Dantzig: the definition of supernatural
numbers (which are related to van Dantzig's universal numbers) and
Theorem 5, which he proved for ordinary p-Sylow subgroups [6].
Lemmas 1 and 4 and the method of proof in Theorem 5 are due to
Tate [5].

A topological group G is of Galois type if it is compact and totally
disconnected. In any Galois type group the open normal subgroups
form a neighborhood base at the identity. Every closed subgroup is
the intersection of the open subgroups containing it [4]. Whenever
M and N are open normal subgroups of G and ND M we shall write
&¥ for the natural homomorphism of G/ M onto G/N (these quotient
groups are finite) and ¢y for the natural homomorphism of G onto
G/N. G is the inverse limit of the groups {G/N}, N ranging over the
open normal subgroups of G. Conversely, the inverse limit of finite
groups is of Galois type.
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A supernatural number is a formal product of powers of primes.
Infinitely many factors are permitted, with exponents 1, 2, - - -, o,
Supernatural numbers are multiplied by addition of exponents. If 7
is a set of primes and § a supernatural number we say

dand x are coprime when p € = implies p } 3,
7|8 (xr divides3) when p & = implies p | 3,
8|« when p | 6 implies p € .

Whenever G is a group of Galois type and S is a closed subgroup
of G we define the index of Sin G ([G:S]) as the supernatural num-
ber which is the least common multiple of the integers [G: U] as U
ranges over open subgroups of G containing S. Then [G:S] is also
the l.c.m. { [G:SN]} as N ranges over the open normal subgroups of
G. The order of G,0(G), is [G:1]. G is a  group if o(G)| . A closed
subgroup S of G is a w-Sylow subgroup if = and [G:S] are coprime
and S is a 7 group.

1. LEMMA. If S and T are closed subgroups of the Galois type group
G and S contains T then [G:T]=[G:S][S:T].

ProoF. For N an open normal subgroup of G we know [G:TN]
=[G:SN][SN:TN] and [SN:TN]=[S:T(SN\N)]. Taking the
least common multiples as N varies we see that [G:T] divides
[G:S][S:T], so we need only show that [G:S][S:T] divides
[G:T]. Suppose that for m and k<, pm divides [G:S] and p*
divides [S:T]. It follows that there are open normal subgroups N,
and N; of G for which p=|[G:SN:] and p*|[S:T(SNNz)]. Let
N=N,N\N;. Then p"‘l [G:SN] and p*| [S:T(SNN)]. Therefore
pmtt divides [G:TN] and thus also divides [G:T)]. Therefore
[G:S][S:T] divides [G:T). q.ed.

2. COROLLARY. A subgroup S is a w-Sylow subgroup for some = if
and only if its order and index are coprime.

3. COROLLARY. One w-Sylow subgroup cannot strictly contain another.

Proor. Let S and T be #x-Sylow subgroups for which T'CS. Then
0(S)=0o(T)[S: T] implies [S: T] divides =, but [G:T]=[G:S][S:T]
implies [S:T] and 7 are coprime, which is a contradiction unless
S=T.

4. LemMA, If S is the intersection of a decreasing family {S,} of
closed subgroups of G then [G:S]=1lcm. {[G:S.]}.

PrOOF. Lemma 1 implies [G:S]=[G:S.][S.:S] for all , hence



1963] INVERSE LIMITS OF SOLVABLE GROUPS 149

Le.m. {[G:S.]} divides [G:S]. Conversely, if m< ® and p»| [G:S]
then there is an open normal subgroup N for which p"‘[ [G:SN].
Since G— SN is compact and disjoint from S=MNS, there is a finite
intersection S,, M - -- /M S, contained in SN. However
Se\ - - - MS., equals S,, since the S, are decreasing. Therefore
p™| [G:S.,], hence p™|Lc.m. { [G:S.]}. Thus [G:S]=lc.m.{[G:S.]}.
q.e.d.

A group of Galois type is projectively solvable if it is the inverse
limit of finite solvable groups.

5. THEOREM. Let G be projectively solvable. For each w dividing o(G),
G has m-Sylow subgroups, any two are conjugate, and any w subgroup of
G 1is contained in one of them.

ProOF. Let 91U be the set of closed subgroups S of G for which
[G:S] and 7 are coprime. GE N and N is partially ordered by inclu-
sion. Lemma 4 shows that the intersection S of a maximal chain from
9N is minimal in 9N, We shall show such an S is necessarily a 7 group.

Let N be an open normal subgroup of G. We must show o(S/SN\N)
divides . Since G/N is solvable so is S/SNN, which is isomorphic
to SN/N. Choose a 7-Sylow subgroup W of S/SN\N (Hall, [1]).
Let T be the inverse image in S of W under ¢sny. T is closed in G and
both open and closed in S. [G:T]=[G:S][S:T]. [G:S] and = are
coprime since SEIM. Since w and [S/SNN: W], which equals [S:T],
are coprime, we see that [G:T] and 7 are coprime. Therefore TE 9.
Since TCS and S is minimal in 9, T'=S. Therefore S/SNN
=T/SN\N=W, but we know o(W) divides w. Therefore S is a -
Sylow subgroup of G.

Now let T be any = subgroup of G. For each open normal sub-
group N of G the set Ky of members of G whose images ¢ under ¢y
satisfy o~'¢x(T)o Cpn(S) is closed and nonempty (Hall, [1]). NCM
implies Ky C K, hence {K N} has the finite intersection property. If
7ENKny then 77177 CS. Therefore any 7 group has a conjugate in-
side a given w-Sylow subgroup. Corollary 3 then implies any two
wm-Sylow subgroups are conjugate. q.e.d.

6. COROLLARY. Let U(S) be the normalizer of the w-Sylow subgroup
S. Then [G: U(S)] and 7 are coprime since SCRN(S).

Theorem 5 guarantees the existence of w-Sylow subgroups. Zorn's
lemma was required in the proof. Once this existence has been estab-
lished, however, the 7-Sylow subgroups can be characterized some-
what more constructively.

7. THEOREM. Each w-Sylow subgroup S of G may be written as the
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inverse limit of groups {Sn} where Sy is a w-Sylow subgroup of G/N
and ¢X maps Su onto Sy. Conversely, if {SN} 15 a family of subgroups
of the G/ N with these properties then the inverse limit S of { Sy} is a
w-Sylow subgroup of G.

ProOF. Any closed subgroup S of G may be written as the inverse
limit of {Sy} where Sy=SN/N, which is isomorphic to S/SNN.
Then ¢¥ maps Sy onto Sy. The argument in Theorem 5 shows that
Sy is a m-Sylow subgroup of G/N if S is a w-Sylow subgroup of G.

Conversely, if each Sy is a 7-Sylow subgroup then S is a 7 group,
hence Sis contained in some 7-Sylow subgroup S’. Then $'N/N must
equal SN/N for all N, hence S=.5'. q.e.d.

We can now generalize Hall’s results on Sylow systems [3]. Let G
be projectively solvable, w¢ the set of primes dividing 0(G). Choose a
76— {p}-Sylow subgroup (p-complement) C, for each pEme. For
ZCrme let Sz=Nyez C,. We set Si;=G. Then §= {Sz} is a Sylow
system of G.

8. THEOREM. Sz is a Z-Sylow subgroup of G.

Proor. Each C, is the inverse limit of p-complements of the groups
G/N (Theorem 7). Hall’s theorem [3] tells us that the intersections
of the p-complements for p &2 are Z-Sylow subgroups of the groups
G/N. These Z-Sylow subgroups are mapped onto each other by the
#¥ hence their inverse limit is a =-Sylow subgroup which is easily
proved equal to S;. q.e.d.

9. LEmMA. If {Z.} is a family of subsets of wa then Snz,=NSs,.
This follows trivially from the definition of Ss.
10. THEOREM. S:Sa=Szua.

PRrooF. If 0§ & S:Sa each of its projections ¢ (ad) lies in the product
of a =-Sylow subgroup and a A-Sylow subgroup of G/N (Theorem 7).
By Hall’s theorem [3] this product is a Z\UA-Sylow subgroup of
G/N, and is in fact ¢x(Szua). Hence Sz:S5a CSzua.

To prove the reverse inclusion, suppose 7&Szua. Then for each
open normal subgroup N, o¢x(7) € ¢n(Szua), which equals
én(Sz)Pn(Sa). Thus there are elements o5 E Sz and 6y & Sa for which
on(ondy) =dn (7). This shows that the set Ky of those members 7 of
SzSa for which ¢n(n) =¢x(7) is nonempty. Ky is closed since SzSa
is closed, even though we do not yet know it is a subgroup. {Kn}
has the finite intersection property since for open normal subgroups
Nl, sty Nj, nKN,.DKnN‘. Choose penKN. For all N, ¢w(p) =d>N(‘r)
implies p=7, but we know p& S3Ss. Therefore Szua CS:Sa. q.e.d.
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11, CoROLLARY. S3Ss=Ssua=3SaSs, t.6., 8§ consists of commuting
subgroups. In particular, {S(,,} is a commuting family of ordinary
p-Sylow subgroups.

12. CorOLLARY. Theorem 10 is true for infinite products, i.e.,.
Sz, Sz ¢ ¢ ¢ |T=Susz, for any family {Z.§ of subsets of wq.
a’ <8 o

PRrOOF. By S%,Sz; - - - we mean the set of products of finitely many
members of USs,. Since the Sz, commute pairwise, this set, and
hence its closure, S, is a subgroup. S is the smallest closed subgroup
containing Sz, for all a. Since Suz, DS, for all @ we have Suz,DS.
It will suffice to prove that S is a UZ,-Sylow subgroup, for then we
may apply Theorem 8 and Corollary 3. S is a UZ, group since it is
contained in one. Since [G:S3,] and =, are coprime and [G:S:z,]
= [G:S][S:Sz,] we see that for each a, [G:S] and Z, are coprime.
Thus [G:S] and UZ, are coprime and S is a UZ,-Sylow subgroup.
q.ed.

By combining the results 8 through 12 we prove

13. THEOREM. For each projectively solvable group G there is a lattice
injection of the set of subsets of wq into the lattice of closed subgroups of
G. Its range is commutative and consists of one Sylow subgroup of each
type. The lattice join corresponds to set multiplication.

We now study the family of Sylow systems. The Sylow system
77187 generated by the 7-conjugates of the p-complements in § is
said to be conjugate to 8. If $* =7187 then St=7"1Szr for all Z Cwe.

14. CONJUGACY THEOREM. Any two Sylow systems S, $* are conju-
gate,

Proor. For any finite set {py, - - -, pa} Crg there is a 7EG for
which 7=1C,,r = C;;,, i =n. We prove this by induction. The proof is
the same as Hall’s [3]. For n=1 the statement is Theorem 5. Assume
that conjugation with 7 takes C,, into Cj, ¢<n—1. Since S} Cp,
=G=C,,S,, any conjugate of C,, may be obtained by using an ele-
ment of Sj,. In particular, there is a ¢ €S}, for which ¢=1(r-1C, 7)o
=C,,. Since Sy, CCy when pp, we can conclude that (70)~1C,(r0)
= C,, for i Zn.

Let K, be the coset of the normalizer of C, which takes C, to C;.
K, is closed. The induction above shows {K,} has the finite inter-
section property. Any 7&K, clearly satisfies our requirements. q.e.d.

15. EMBEDDING THEOREM. If 3 is a commuting set of subgroups of
G such that each T3 is a wr-Sylow subgroup then there is a Sylow sys-
tem 8 containing 3.
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PRroOF. For each pE&mqlet T, be the closure of the product of those
TE3 for which pfo(T). (If there are no such T let T,= {e}.) The
argument in Corollary 12 shows that T, is a group. T, is the inverse
limit of the product in each G/N of the groups ¢»(T) for which
pto(T), therefore pto(T,). Using Theorem 5, choose a p-complement
C, containing T,

Let $ be the Sylow system generated by {C,}. For each T€3,
S., contains T since S,, is the intersection of the C, for which
p&mr, ie., for which TCT,CC,. Since both T and S,, are wr-
Sylow subgroups they are equal, hence 3CS8. q.e.d.

16. SUBGROUP THEOREM. If H is a closed subgroup of G and 3 is a
Sylow system for H then there is a Sylow system 8 of G for which
3=8NH, i.e., each TE3 is SN\H for some SES.

ProoF. Let {C;} be the p-complements in 3. For each pCwy
choose a p-complement C, (in G) which contains C;. If p & mg choose
a p-complement C, containing H. Then the Sylow system generated
by {C,} will do. Suppose TE3. Then S,,N\H contains T and is a
wr group. [H:T)=[H:S,,NH][S,;N\H:T] and T a m,-Sylow sub-
group imply [H:S,,N\H] and mr are coprime. Thus S.,NH is a
mr-Sylow subgroup and therefore equals T. q.e.d.
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