ARITHMETIC MEANS OF FOURIER-STIELTJES-SINE-COEFFICIENTS

GÜNTHER GOES1

The theorem stated below contains improvements of statements of Hardy [4] and Kinukawa and Igari [6] and an interesting supplement to theorems of Fejér [1], [11, p. 107, 9.3] and Wiener [9], [11, p. 108, 9.6].

DEFINITIONS. Let L be the space of Fourier coefficients of Lebesgue integrable functions and dV the space of Fourier-Stieltjes-coefficients. Unambiguously let L and dV also denote the corresponding spaces of Fourier series and Fourier-Stieltjes-series respectively. Furthermore let

$$f \equiv \sum_{j=1}^{\infty} b_j \sin jt, \quad \tilde{f} \equiv \sum_{j=1}^{\infty} b_j \cos jt.$$

In the following let E and E_1 be BK-spaces [2, p. 350] contained in dV. Then E_s and E_c are the spaces in E of sine- and cosine-coefficients respectively and $\tilde{E} = E_s \cap E_c$. If $b = \{b_j\} \in \tilde{E}$, $||b||_{E_c} = ||f||_E$, $||b||_{E_c} = ||f||_E$, then \tilde{E} is a BK-space with the norm $||b||_{\tilde{E}} = ||b||_{E_s} + ||b||_{E_c}$ [10, p. 472]. Let

$$B_n = n^{-1} \sum_{i=1}^n b_i, \qquad B = \{B_n\},$$

and denote by T_H the mapping $b \rightarrow B$. $T_H \in (E, E_1)$ means $b \in E$ implies $B \in E_1$.

STATEMENTS. Hardy [4] proved $T_H \in (L_c, L_c)$ and $T_H \in (L_s, L_s)$ is also true [7], [3, Theorem 27]. Even the following can be proved.

THEOREM. If $\sum_{j=1}^{\infty} b_j \sin jt$ is a Fourier-Stieltjes-series, then $\sum_{n=1}^{\infty} B_n \sin nt \in L$ and $\sum_{n=1}^{\infty} B_n \cos nt \in L$, where $B_n = n^{-1} \sum_{j=1}^{n} b_j$. Or in symbols: $T_H \in (dV_s, \tilde{L})$.

SKETCH OF PROOF. T_H is a linear bounded transformation from L_s into L_s [10, p. 471] and $T_H \in (L_s, L_s)$ implies $\sup_n ||T_n|| < \infty$ [2, Theorem 4.4] where $T_n = \sup_{\|f\|_L \le 1} ||T_n f||_L$ and $T_n f = \sum_{j=1}^n (1-j/(n+1))B_j \sin jt$.

Since dV is a norm determining manifold in L and since $||f||_L = ||f||_{dV}$ for $f \in L$ we have also $||T_n|| = \sup_{\|f\|_{dV} \le 1} ||T_n f||_{dV} = O(1)$ $(n \to \infty)$

Received by the editors December 14, 1961.

¹ The research resulting in this paper was supported by the National Science Foundation (G 14876) and the National Research Council of Canada.

and therefore $T_H \in (dV_s, dV_s)$ [2, Theorem 4.5]. (Correspondingly we get $T_H \in (dV_c, dV_c)$ but this is of no interest here.)

By Kinukawa and Igari [6, p. 274] we have $T_H \in (L_s, L_c)$ and since $T_H \in (L_s, L_s)$ we have $T_H \in (L_s, \tilde{L})$. The proof that $T_H \in (L_s, \tilde{L})$ implies $T_H \in (dV_s, d\tilde{V})$ is exactly the same as the proof that $T_H \in (L_s, L_s)$ implies $T_H \in (dV_s, dV_s)$. Since $d\tilde{V} = \tilde{L}$ [8; 11, p. 285] we have $T_H \in (dV_s, \tilde{L})$.

REMARKS. 1. Let V be the space of Fourier coefficients of functions of bounded variation. From the fact that $b \in V$ implies $\sum_{j=1}^{\infty} |b_j| < \infty$ [5; 11, p. 286] it follows with our theorem that $b \in dV_*$ implies $\sum_{n=1}^{\infty} n^{-2} |\sum_{j=1}^{n} b_j| < \infty$.

2. As remarked by Loo [7, p. 270] we have $T_H \notin (L_c, L_s)$.

REFERENCES

- 1. L. Fejér, Über die Bestimmung des Sprunges einer Funktion aus ihrer Fourier-reihe, J. Reine Angew. Math. 142 (1913), 165-168.
- 2. G. Goes, BK-Räume und Matrixtransformationen für Fourierkoeffizienten, Math. Z. 70 (1959), 345-371.
- 3. ———, Complementary spaces of Fourier coefficients, convolutions, generalized matrix transformations and operators between BK-spaces, J. Math. Mech. 10 (1961), 135–158.
- 4. G. H. Hardy, Notes on some points in the integral calculus. LXVI. The arithmetic mean of a Fourier constant, Mess. of Math. 58 (1928), 50-52.
- 5. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Ann. 97 (1926), 159-209.
- 6. M. Kinukawa and S. Igari, Transformations of conjugate functions, Tohoku Math. J. 13 (1961), 274-280.
- 7. C. T. Loo, Note on the properties of Fourier coefficients, Amer. J. Math. 71 (1949), 269-282.
- 8. F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, Quatrième congrès des math. scandinaves, Stockholm (1916), 27-44.
- 9. N. Wiener, The quadratic variation of a function and its Fourier coefficients, Mass. J. Math. 3 (1924), 72-94.
- 10. K. Zeller, Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53 (1950/51), 463-487.
 - 11. A. Zygmund, Trigonometric series, Vol. I, University Press, Cambridge, 1959.

NORTHWESTERN UNIVERSITY AND UNIVERSITY OF WESTERN ONTARIO