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applying Theorem 1, that |0i(i)-"0»(O| =x(0 for t^r where x(0 is

the maximal solution of z'=co(i, z)+e through (r, 8). Further the first

few examples of page 37 of [4] can all be solved by the application of

Corollary 1. Similarly Theorems 1 and 2 can be used in a natural

way to extend the results of [3 ] concerning bounds on the norm of a

solution of a differential equation.
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THE G-FUNCTIONS AS UNSYMMETRICAL
FOURIER KERNELS. II

ROOP NARAIN

1. A function K(x) by means of which an arbitrary function f(x)

subject to appropriate conditions, is capable of being represented as

a repeated integral of the form

/> 00 p 00

K(xu) \    K(uy)f(y)dydu
o J o

has been called a Fourier kernel by Hardy and Titchmarsh [l, p. 116].

This is a symmetrical formula. There are also unsymmetrical form-

ulae of the type

/► 00 /* 00K(xu) I    H(uy)f(y)dydu
0 •'0

in which the kernels in the two integrals are different functions. If

f(t) is not continuous at t = x, f(x) on the left-hand side of (1.1) or

(1.2) is replaced by

j{f(x+0)+f(x-0)}.
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The functions K(x) and H(x) have been referred to as a pair of un-

symmetrical Fourier kernels.  Examples of such kernels have been

given by various authors from time to time. In a recent paper [2,

p. 950] the author obtained formally a pair of unsymmetrical kernels •

in terms of Meijer's G-function. These functions [2, p. 953] are

/1 t\ trf \      o    T-1/2 m,p       /     I au ■ ■ ■ , ap, bh ■ ■ ■ , bt\
(1.3) K(x) = 2yx       Gp+^+nlx^l ),

\     I Ci> • • • , cm, di, • • •, an/

,* a\ TT/ \      r,    T-i/2_n.«       /     I —bi, • • • , —bq, — ai, • • • , — ap\
(1.4) H(x) = 2-1X G^q.m+nix^l ),

\     \ ~di, • ■ ■ , —an,   — c\, • • • , —Cm/

where T>0, n — p = m — q>0 and

p q m n

Jl a¡ + Z) h m Z) Ci + Z) dj.
y-i /-i 3-1 y=i

The importance of these functions is due to their very general yet

simple form from which many known as well as new kernels can be

deduced as special cases [2, £3].

The G-function is a sum of hypergeometric functions each of which

is usually an entire function. It is defined [3, p. 207] by the integral

(1.5)

.,„ /  I «i, • • •, ap\

\  I bi, ■ ■ • , bq/

2iriJ L

IIr(*i + í)IIr(i-a,-í)
-xr'ds,

fl  r(l - h, -s)  fi T(a, + s)
y—m+l y-n+i

where m, n, p and q are integers with

q^ p+í,       0 un g p,       Ogfflá?.

The poles of the integrand must be simple and those of r(ôy+5),

j=l, • • -, m, must lie on one side of the contour L and those of

r(l— ay — s), j=l, ••-,», must lie on the other side.

The case of symmetrical formula in which K(x) = H(x) =a certain

G-function has been considered by Fox [4, p. 395 ]. In the present

paper which is in continuation of the paper [2] we shall formulate

convergence conditions with which the functions K(x) and H(x) of

(1.3) and (1.4) give rise to the formula (1.2). The work of this paper is

based upon a theorem of Hardy and Titchmarsh [l, p. 148, Theorem 4]

which will be reproduced here in the form in which it is going to be

used.
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2. Let k(s) and h(s) be the Mellin transforms of K(x) and H(x)

respectively, i.e.,

/i oo /» oo

Ä^x)*«-1**:»:,        A(j) =  |    H{x)x'~ldx,
o ^ o

where s = o--H'/, o- and í real. According to Hardy and Titchmarsh

a function k(s) will be said to belong to k', k(s)(E.k', if it satisfies the

following conditions.

(a) k(s) is regular in a strip o-i<o-<<T2 where fft<0, o"2>l except

possibly for a finite number of simple poles on the imaginary axis,

and

for t = + oo,

(b)

*r» = L + y + o (tV)} r(i) Cos (-i ^

k(s) = j«' + — + 0 (-j—r;)} r(5) Cos (— i,r) for ' =

where a, ß, a', ß' are complex numbers.

The following theorem due to Hardy and Titchmarsh will be of

use in the present work.

Theorem. If
(i) k(s)ek',
(ii) h(s)ek',
(iii) k(s) and h(s) satisfy the functional relation

(2.2) *(i)A(l - s) = 1,

(iv) /(y)GL(O, oo ) and is of bounded variation near y = x (x>0),

then

(2.3) f XK(xu) f "'H(uy)f(y)dydu = - {/(* + 0) + /(* - 0)}.
J o " o 2

3. We now proceed to establish the relation (2.3) for the case of

functions

K(x) = K(x),       H(x) = H(x).

We shall prove the following theorem.

Theorem 1. If

(i) 7>0,       0<n — p = m— q = tj/2, say,



1963] (^FUNCTIONS AS UNSYMMETRICAL FOURIER KERNELS. II 21

(ii) Ëa> + £ bj = £ c¡ + £ dj,
]=1 i-l 3-1 j-1

(iii)

[(t+*HR1(^r + 6/)>^-'      /-*.

ll(j-*)*SJ.        /=!,..,»,

(iv) yly~ll2f(y)(E.L(0,00) aw¿ /(y)  ¿5 0/ bounded variation near

y = x (x>0), then

(3.1) f "k(««) f "°H(uy)f(y)dydu = - {/(* + 0) + /(* - 0)},
v o J 0 *

lüÄere i£(x) and #(#) are giVera by (1.3) and (1.4), respectively.

Proof. We first make the following transformations of variables

in (3.1),

(3.2) x=X^\       y-Y*'*,       «-(&/«)?/*.

By an easy computation and adjustments, (3.1) can be written as

(3.3)

where

/► m /» 00

K*(XU) I    H*(UY)f*(Y)dYdU
n J n

= ^-{/*(X + 0)+/*(X-0)},

(3.4) K*(x) = -4-K()~ f       )«*/*r_1

(3.5) a*(«) =

27       \ (. 77 J      /

27 -({f}>lUf-lH

and/*(x)=Ä;'/4T-1/2/(x''/2i'). We have then to deal with the kernels

K*(x) and ¿f*(;e) instead of /£(*) and H(x). The reasons for making

these transformations will appear in the next section.

Using the definition (1.5) of the G-function, K*(x) is given by



->j.+ (ir-l)/2

ds,
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\ V / \\ V / I Ci, ■ • -, cm, di, • • -, dn /

m p

,   „      nr(», + í)E[r(i-«J-í)/

= ~ f W^-=-(±Y
TJr(l-dy-5)IIr(6y + i)
y=i y-i

where the contour L of integration is a straight line parallel to the

imaginary axis in the s-plane separating the poles of r(cy-f-s),

j = l, • • • , m, and T(JL-a)—s), j-\, ■ ■ ■ , p.
Making one more transformation r¡s — (r¡ —1)/2 = 5, the above equa-

tion becomes

(3.6) K*(x) = — f K(S)x-sdS,

where

ft r(i/2 + c, - 1/2, + s/n)
K(S) = —-

II r(i/2 - d, + 1/2, - s/v)

(3.7)

II r(l/2 - a, + 1/2, - S/v)
y-i_

fl r(l/2 + iy - 1/2, + 5/,)
y-i

and the contour L is any straight line parallel to the imaginary axis

in the S ( = <x+it) plane for which 0O<l/2. Evidently 3C(S) is the

Mellin transform of K*(x) in the sense inverse to (2.1).

If 3C(S) is the Mellin transform of H*(x), it can be seen in a similar

manner that

Ê r(l/2 - di - 1/2, + S/n)

3C(5) = ^-

ft r(i/2 + cj+ 1/2, - S/n)

(3-8)

II r(l/2 + bi + 1/2, - s/n)
X —-ns-ll%.

f[T(l/2-ai-l/2n + S/n)
y-i
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We shall now use the theorem of §2 to establish (3.3). It will be

shown that X(S) and 3C(5) satisfy conditions (i), (ii) and (iii) and

f*(Y) satisfies condition (iv) of that theorem.

Let 2 denote the strip 0 ^ct i£ 1 and — oo <i < oo, where S=ff+it..

From (3.7), the poles of X(S) are at the points

-r¡r - T) \c} + — - —J,        j = 1, • • • , m,

and from (3.8), those of 3C(S) are at the points

-rir + v Idj - — + — J,       j = 1, ■ • • , n,

vr + v (bj + — + — j»       3 - 1» • ' ' i Í.

where r is a positive integer or zero. From conditions (iii) of Theorem

1, it follows that if only the inequalities hold, then all the a¡ poles of

X(S) and b,- poles of 5C(S) lie to the right of S while c,- poles of X(S)

and dj poles of 3C(5) lie to the left of S, none of them being on the

boundaries of S. If, however, the equality holds for some of the c/s

and d/s in (iii), then there are simple poles of 3C(5) and 3C(5) on the

imaginary axis and there can be at the most m of 3C(5) and n of

3C(5). Thus since the only singularities of X(S) and 3d(S) are isolated

simple poles it follows that <ri<0 and <T2>1 can be found such that

X(S) and 3C(5) are both regular in the strip o~\ <a <<r2 except possibly

for a finite number of simple poles on the imaginary axis.

To prove that X(S) and X(S) also satisfy the second requirement

for being of class k' we shall find the asymptotic expansions of X(S)

and 5C(S) for large positive and negative t.

The asymptotic expansion [3, p. 48] of the Gamma function for

large s is given by

log r(i + a) = (s + a - — J log j - s + — log (2t)

(3.9)

+
7 + 0(r)'

where | arg 51 < w, B is a constant independent of s.

In the expression for X(S) let the Gamma functions involving
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— S/n be changed into the Gamma functions containing +S/rj by

the formula [3, p. 3]

T(z)r(l - z) = x/Sin TZ

so that we get

m n

II r(i/2-K~i/2,+s/,) n r(l/2+dy-l/2,+5/,)

X(S) = -^-^-

f[r(l/2+fl-l/2,+5/,) fi r(l/2+iy-l/2,+5/,)

(3.10)

II Sin *(\/2-dj+1/2,-5/,)
X —-■- 7r"-V~1/2.

II Sin ir(\/2-a¡+1/2,-5/,)
y=i

Using (3.9), we notice that for large S, \ arg S\ < 7r, the contribution

to the asymptotic expansion of X(S) due to the factors involving

Gamma functions only is

Km n p *       \ S
£ c¡ + 23 d¡ - X) a¡ - 2 &y ) log —
y-i y-i y=i y=i    / n

+ i(m + „_?_g){(i_l)lo8l_s}][j4l + ^ + o(1iF)]

on using conditions (i) and (ii) of the theorem,

- ,"« op [(5 - i) log5 - s] [a, + f + 0 (|^)],

where Ai and 5i are constants independent of S. Using (3.9) again,

this expression is seen to be equivalent to

(3.11) ^-sr^j^ + ^ + O^)},

where A s and B2 are constants.

Next we consider the contribution to the asymptotic expansion of

3Z(S) due to the factors involving Sine functions. On allowing |f|

to become large, it is easily seen that
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Sin ir(d - S/v)
-— = D, + O e-i'l),
(Cos(57r/2))2''

where 6 and ij are independent of S and D\ is a constant such that

Di = 22/^i ex^vi/Q _ y2))        for large positive /,

and

D1 = 2Vr~1 exp{ -ici(d - 1/2)}     for large negative t.

There are n Sine factors in the numerator and p in the denominator

of X(S) and since n — p = r¡/2, the total contribution of all the Sine

factors to the asymptotic expansion of X(S) is a factor of the form

(3.12) {Z>i + 0(«H'")} CosOSV/2),

where D2 is a constant such that

D2 = 21_'/2 exp \id (-E ¿i + £ ai )(     Ior large positive /,
(.    \4      i=1 j-i    J)

D2 = 21-'/2 exp < — « I-£ dj + £ a,- ) >    for large negative /.
(        \4      J=1 i=i    /j

The asymptotic expansion of X(S) can now be written by taking

the product of (3.11), (3.12) and the factor t^'V-1'2. We thus have

finally the following result. For S = o--\-it and sufficiently large values

of 11\ the asymptotic expansion of X(S) is given by

(3.13) X(S) - Y(S) CosGSx/2) |« + ~ + 0 (t^Tu)} ,

where the constants a and |3 each have one value for large positive t

and another for large negative /.

In an exactly similar manner it is seen that for large values of |i|,

(3.14) 5C(S) ~ T(S) Cos(5t/2) {«' + j + 0 (ra)} ,

where a' and /3' are constants each having one value when / is large

and positive and another when t is large and negative.

We have thus shown that X(S) and X(S) both belong to the class

k' so that conditions (i) and (ii) of the theorem of §2 are fulfilled.

The third condition of the theorem is that

3K(5)3e(l - S) = 1

and this is obviously true from (3.7) and (3.8).
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The fourth condition is that/*(F) belongs to L(0, <») and that it

is of bounded variation near Y=X (X>0). This demands that

|  7W4r-i/*/(7WS7)| ¿y

o

must exist and the integrand must be of bounded variation near

Y = X (X>0). On putting Yi^ — y, it follows from (iv), in the enunci-

ation of Theorem 1, that these two requirements are fulfilled.

All the conditions of the theorem of Hardy and Titchmarsh have

thus been shown to be satisfied. The conclusion of that theorem must

therefore follow and consequently the equation (3.3) is true. On using

the transformations (3.2) in the reverse sense, (3.3) implies the truth

of (3.1).

4. Here we shall obtain the asymptotic expansions of K(x) and

H(x) which will explain the necessity of effecting the transformations

(3.2) in the proof of Theorem 1.

The classical Fourier kernels such as Sin x, Cos x, and y/xJ,(x) all

behave in a very similar manner as x—> ». When x is complex they

all tend to infinity with exponential rapidity and when x is real they

all oscillate finitely as x—»«> just like Cos x. It is in fact the behaviour

of a function on the real axis which decides whether it is a Fourier

kernel or not. The functions K(x) and H(x) of (1.3) and (1.4) do not,

however, necessarily oscillate finitely as x—*oo through positive

values. But the kernels K*(x) and H*(x) in the transformed integral

equation (3.3) do oscillate in the familiar manner like Cos x as x—><=°

through positive values as is shown below. It is for this reason that

the equation (3.1) is first transformed by the relations (3.2) into (3.3)

and then the theorem of Hardy and Titchmarsh is applied to it.

The asymptotic expansion of K(x) as defined by (1.3) is obtained

from the work of Meijer [5, p. 1065, Theorem 18, assertion 4]. For

large real positive x, we have

K(x) ~ xtir-wiCoshx^i" + a){A + 0(x-iyi")}

+ Sin(,x2?/< + a)0(x-2vli)]

+ JZx-W-'i^Ej + 0(x~2y)},
j-i

where , = 2(«—p) — 2(m — q), a, A and E¡ are constants. Now writing

x = Xil2l> and using the inequality
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of the enunciation of Theorem 1, X4.1) becomes

(4.2) K(X^)X^-^2 ~ CosfaX + a){ A + 0(X~1)} + 0(X~^),

where Si>1/2t; + 1/2. All the algebraical terms of (4.1) under the

summation sign in (4.1) have been merged into the order term of

(4.2). The left-hand side of (4.2) is nothing but a constant multiple

of K*(x).

We have, similarly, for large real positive x,

H(x) ~ x^^i^Cos^x^i" + a){ A + 0(x~i''^)}

+ Sin^s2?/' + a)0(x-2yli)]

(4.3) 3 " '   V "

+ £ *4iO**i){Ej + 0(x~2y)},
3=1

and on writing x = X"l2y and using

(t+6*H
of the enunciation of Theorem 1, (4.3) becomes

(4.4)    HiX'i^X'Hy-1!2 ~ Cos(r¡X + a){A + 0(X~1)} + 0(X~^),

where d2>l/2rj + l/2.

5. Here we prove a theorem concerning a discontinuous integral

associated with K(x) and H(x).

Theorem 2. Let

Hx(x) =  f H(u)du.
J o

If the conditions (i), (ii) and (iii) of Theorem 1 hold, then

0, x > y > 0,

Hi(«y)

/Hi(i
K(xu) —

o u
(5.1) I    K(xu)—— <f« =

1
— >       x = y > 0,
2

11, y > x > 0.

Proof. In Theorem 1, take/(y) defined by

y<Y,

,b)-t ;>r,

so that
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{f(x+0)+f(x-0)\ -

1,

1

2

0,

We have

/rY               Hi(uH(uy)f(y)dy =  I    H(uy)dy =-
o                            «^ o                            u

Y > x> 0,

x= Y>0,

x> Y > 0.

HriuY)

o "o

(5.1) then follows from Theorem 1.

6. Taking p = q, m = n and

fly + bj = 0,       j = 1,

d + dj =0,      y - 1,

we notice that

(6.1)   K(x) = H(x) = 2y*?-1l>G¿£(f>
au ,0p «1.

■«I»

• •, - «A

■  ■ , — Cm)

which is a symmetrical Fourier kernel obtained formally by the

author in an earlier paper [6, p. 298]. This symmetrical Fourier

kernel has been studied in detail by Fox [4, p. 396, Equation (7)].
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