## SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is normally no other outlet.

## A NOTE ON CONTINUED FRACTIONS

## S. DROBOT

It is well known that the convergents $p_{n} / q_{n}$ of a continued fraction of a real number $\alpha$ are its best approximations, i.e. that for every rational $a / b \neq p_{n} / q_{n}$ with $1 \leqq b \leqq q_{n}$ and $n \geqq 1$ there is

$$
\begin{equation*}
\left|q_{n} \alpha-p_{n}\right|<|b \alpha-a| . \tag{1}
\end{equation*}
$$

The usually produced proofs of this fact use rather intricate arguments. ${ }^{1}$ Here is a proof of (1) based on the two following elementary properties of the continued fraction

$$
\begin{equation*}
1 / q_{n+1}<\left|q_{n-1} \alpha-p_{n-1}\right|<1 / q_{n} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
q_{n}\left|q_{n-1} \alpha-p_{n-1}\right|+q_{n-1}\left|q_{n} \alpha-p_{n}\right|=1 . \tag{ii}
\end{equation*}
$$

If $a / b=p_{n-1} / q_{n-1}$ inequality (1) holds by (i):

$$
\left|q_{n} \alpha-p_{n}\right|<1 / q_{n+1}<\left|q_{n-1} \alpha-p_{n-1}\right| .
$$

If $\left|a q_{n-1}-b p_{n-1}\right| \geqq 1$ then

$$
|a / b-\alpha|+\left|\alpha-p_{n-1} / q_{n-1}\right| \geqq\left|a / b-p_{n-1} / q_{n-1}\right| \geqq 1 /\left(b q_{n-1}\right)
$$

i.e.

$$
b\left|q_{n-1} \alpha-p_{n-1}\right|+q_{n-1}|b \alpha-a| \geqq 1
$$

while the assumption $1 \leqq b \leqq q_{n}$ implies by (ii)

$$
1 \geqq b\left|q_{n-1} \alpha-p_{n-1}\right|+q_{n-1}\left|q_{n} \alpha-p_{n}\right|
$$

whence

$$
\begin{equation*}
\left|q_{n} \alpha-p_{n}\right| \leqq|b \alpha-a| . \tag{1}
\end{equation*}
$$

Received by the editors February 19, 1962.
${ }^{1}$ See e.g. O. Perron, Die Lehre von den Kettenbrïchen, 1929, pp. 52-53; G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 3rd ed., 1956, pp. 151-152; I. Niven, Irrational numbers, 1956, pp. 62-63; J. W. S. Cassels, An introduction to Diophantine approximations, 1957, pp. 2-4; A. Ya. Khintchine, Continued fractions (in Russian), 2nd ed., 1949, pp. 38-40.

Equality in ( $1^{\prime}$ ) is for irrational $\alpha$ impossible in view of $a / b \neq p_{n} / q_{n}$ assumed. For rational $\alpha$ excluding equality in ( $1^{\prime}$ ) requires, strangely enough, additional argument which may run as follows. Substitute into ( $1^{\prime}$ ) with equality presumed

$$
\alpha=\frac{P}{Q}=\frac{p_{n-1} \varphi_{n}+p_{n-2}}{q_{n-1} \varphi_{n}+q_{n-2}}
$$

with rational $r_{n}$, and $Q \geqq q_{n}$, to get

$$
|b P-a Q|=\left|r_{n}-a_{n}\right|,
$$

where $a_{n}$ is the $n$th partial quotient in the continued fraction expansion of $\alpha$. The last equality shows that $r_{n}$ is an integer, thus, by Euclid's algorithm, $\tau_{n}=a_{n}$ whence $a / b=P / Q=p_{n} / q_{n}$ contrary to assumption.

University of Notre Dame

