A NEW PROOF OF A COMPARISON THEOREM FOR ELLIPTIC EQUATIONS

KURT KREITH

The classical Sturmian comparison theorem deals with solutions u, v of two ordinary differential equations.

$$\frac{d}{dx}\left(a\frac{du}{dx}\right) + fu = 0,$$
$$\frac{d}{dx}\left(b\frac{dv}{dx}\right) + gv = 0,$$

where a and b are positive and continuously differentiable on a closed interval I and f and g are continuous on I. The theorem states that if $a-b \ge 0$ and $f \le g$ on I and x_1 , x_2 are zeros of u in I, then v has a zero in $[x_1, x_2]$.

This theorem was generalized to self-adjoint second order elliptic partial differential equations by Hartman and Wintner [1]. The purpose of this note is to present a new and simple proof of this generalization.

Let u and v be solutions of the elliptic equations

(1)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij} \frac{\partial u}{\partial x_{i}} \right) + fu = 0, \qquad a_{ij} = \bar{a}_{ji},$$

(2)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(b_{ij} \frac{\partial v}{\partial x_{i}} \right) + gv = 0, \qquad b_{ij} = b_{ji}$$

in a bounded domain $R \subset E^n$. We assume that the a_{ij} and b_{ij} are of class C' and that f and g are real and continuous in \overline{R} . The ellipticity of (1) and (2) requires that the hermitean matrices $A = (a_{ij})$ and $B = (b_{ij})$ be positive definite in \overline{R} .

THEOREM. If G is a bounded domain, $\overline{G} \subset R$, and (i) u = 0 on ∂G . (ii) A - B is non-negative definite in \overline{G} .¹ (iii) $g \ge f$ in \overline{G} . Then v must have a zero in \overline{G} .

PROOF. Since f is continuous in \overline{R} we can choose a constant c so

Received by the editors December 12, 1961.

¹ This is equivalent to the condition " $B^{-1} - A^{-1}$ is non-negative definite" which is used in [1].

- ----

that f(x)+c>0 in \overline{R} . Let F(x)=f(x)+c. Define the operator

$$L = -\frac{1}{F} \sum \frac{\partial}{\partial x_j} \left(a_{ij} \frac{\partial}{\partial x_i} \right) + \frac{c}{F}$$

Equation (1) states that u is an eigenfunction of the boundary problem

$$Lu = \lambda u,$$

$$u = 0 \text{ on } \partial G$$

corresponding to the eigenvalue $\lambda = 1$. Since the nodal lines of u divide G into a finite number of domains in which $u \neq 0$ it is sufficient to prove that the theorem holds for each such domain. In other words we may assume that $u \neq 0$ in G and that $\lambda_1 = 1$.

Suppose $v \neq 0$ in \overline{G} . Then we can choose a domain H satisfying $\overline{G} \subset H \subset R$ and $v \neq 0$ in H. Define

$$M = -\frac{1}{F} \sum \frac{\partial}{\partial x_i} \left(b_{ij} \frac{\partial}{\partial x_i} \right) + 1 - \frac{g}{F}.$$

Let *n* denote the exterior normal to ∂H . Then, by an appropriate choice of a function σ on ∂H , equation (2) states that *v* is an eigenfunction of the boundary value problem

(2')
$$Mv = \nu v,$$
$$v + \sigma \frac{\partial v}{\partial n} = 0 \text{ on } \partial H$$

corresponding to the eigenvalue $\nu = 1$. Since $\nu \neq 0$ in H, $\nu_1 = 1$. Since $\overline{G} \subset H$, classical variational principles guarantee that the first eigenvalue of the boundary problem

$$(2'') Mw = \mu w, w = 0 ext{ on } \partial G$$

will satisfy $\mu_1 > \nu_1 = 1$. In particular, the assumption $v \neq 0$ in \overline{G} has lead to the conclusion $\mu_1 > \lambda_1$. We shall show that this conclusion is untenable.

Assuming

$$\int_{G} F \mid u \mid^{2} dx = \int_{G} F \mid w \mid^{2} dx = 1$$

the minimal property of μ_1 yields

[February

$$\mu_1 = \int_{\mathcal{G}} F\bar{w} M w dx \leq \int_{\mathcal{G}} F\bar{u} M u dx.$$

Writing

$$M = -\frac{1}{F} \sum \frac{\partial}{\partial x_j} \left(b_{ij} \frac{\partial}{\partial x_i} \right) + \frac{c}{F} + \left(1 - \frac{g+c}{f+c} \right)$$

and noting that

$$1 - \frac{g+c}{f+c} \leq 0 \text{ in } G,$$

$$\sum b_{ij}\xi_i\xi_j \leq \sum a_{ij}\xi_i\bar{\xi}_j \quad \text{for all } (\xi_1, \cdots, \xi_n)$$

we have

$$\int_{G} F\bar{u}Mudx = \int_{G} \left[\sum b_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial \bar{u}}{\partial x_{j}} + c |u|^{2} + F\left(1 - \frac{g + c}{f + c}\right) |u|^{2} \right] dx$$
$$\leq \int_{G} \left[\sum a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial \bar{u}}{\partial x_{j}} + c |u|^{2} \right] dx = \lambda_{1}.$$

Thus we conclude that $\mu_1 \leq \lambda_1$ and that v(x) = 0 for some x in \overline{G} .

Bibliography

1. P. Hartman and A. Wintner, On a comparison theorem for self-adjoint partial differential equations of elliptic type, Proc. Amer. Math. Soc. 6 (1955), 862.

UNIVERSITY OF CALIFORNIA, DAVIS