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In 1922 Fejér set forth  [l] a principle which has shown itself

highly useful, to the effect that a polynomial pn(z) = (z — ai)(z — a2)

• • • (z—an) which minimizes any classical norm in the complex

plane such as

(1) max | pn(z) | ,        z on E,

m

(2) £ I Pn(*k) h E: {zu Z2, ■ • • , Zm), p>0,
*-l

(3) | pn(z) \p | dz | ,  £ a Jordan arc or curve,    p > 0,
J B

on a closed bounded point set E containing at least ra + 1 distinct

points, must have all its zeros in the convex hull of E. More generally,

the norms (1), (2), (3) may be replaced by any monotonie norm,

namely any norm that decreases whenever the polynomial pn(z) is

replaced by an underpolynomial qn(z) = (z—ßi)(z—ß2) • • • (z—ßn)

j£pn(z); the latter term requires

| ?„(*) |  <  | pn(z) |      on E where pn(z) * 0,
(4)

?n(z) = pn(z) on E where p„(z) = 0.

Fejér's principle is readily proved; if the zero ai of pn(z) lies ex-

terior to the convex hull of E, if a is the point of the convex hull near-

est ai, and if we set a{ =(a+ai)/2, then the polynomial qn(z)

= (z — ce{ )pn(z)/(z — ái) is an underpolynomial of pn(z) on E, so pn(z)

cannot minimize any monotonie norm on E.

The object of the present note is to give what is essentially a

generalization of Fejér's principle. It applies to the minimization of

the difference or quotient of twe monotonie norms of a polynomial

on two disjoint point sets:

It is especially appropriate that this paper should be dedicated to

Professor Einar Hille, in view of his now classical work on the com-

plex zeros of solutions of differential equations.

Presented to the Society, December 27, 1961 under the title A generalization of

Fejér's principle; received by the editors January 27, 1962.
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Theorem 1. Let F(a) be a functional of the complex variable a and

of the closed bounded sets Ei and E2, which decreases whenever simul-

taneously |zi—a| decreases for all z¡. on £1 and \z2—a\ increases for

all z2 on E2; if F(a) is a minimum, then a cannot lie on a line separating

Ei and E2.

Suppose a lies on a line L separating £1 and E2; let a' lie on the

perpendicular to L at a in the sense from a toward the side of L on

which £1 lies, so that the distance aa! is less than the distance from

L to Ei. By the Pythagorean theorem applied to suitable triangles

whose legs are respectively parallel and perpendicular to L, it follows

that |zi—a'\ <\zi — a\ for all Zi in £x and |z2 —a'| > |z2—ot\ for all

Z2 in £2, whence by the properties of F(a) we have F(a') < F(a), so

F(a) is not a minimum of the functional.

If there exists a line L separating £1 and £2, there exist an infinity

of them, and each such line separates a largest set £1 containing £1

from a largest set F2 containing £2; Theorem 1 asserts that a lies in

£1 or £2.

As an immediate illustration of Theorem 1, we formulate

Theorem 2. Let the point sets £x and E2 be disjoint, let £1 consist of

more than n points, and let ||£(z)||i and [|P(z)||2 be monotonie norms on

Ei and E% respectively of the polynomial P(z) = XI? (z—ot,). Then no

zero a, of P(z) can lie on a line separating £1 and E2 if P(z) minimizes

the functional

(5) F(a1)^\\P(z)\\i-\\P(z)\\2.

This functional clearly satisfies the conditions of Theorem 1. How-

ever, it may be pointed out that neither Theorem 1 nor Theorem 2

guarantees the existence or uniqueness of a minimum of the func-

tional. For instance, let us choose £x: {z=l, 2}, £2: {z=—1, —2j,

» = 1, P(z) ^z-ct, \\P(z)\\i = [max |P(z)|, z on £,], \\P(z)\\t

= exp[max |P(z)|, z on £2]; here the functional F(ct) = F(a,) defined

by (5) has no minimum. With the same definitions of £1, £2, n, P(z),

and ||P(z)||i, let us set ||P(z)||2= [max |P(z)|, z on £2], F(a) = F(a,)

defined by (5); here min F(a) occurs for all asSj, F(a)= ~ 3.

Under the conditions of Theorem 1, it follows by Theorem 1 that

if £1 and £2 lie on a line £1, and if a point A of Li separates £1 and

£2 on L\, then F(ct) can be a minimum only if a lies on Li but does

not separate £1 and £2 on Li.

Theorem 1 contains Fejér's principle, for we may choose |[P(z)||i

as any monotonie norm on £1, ||P(z)||2 as zero for every P(z) and £2,

and define F(a) = F(a,) by (5).
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A lemma is convenient in establishing another result.

Lemma 1. Let the point a lie on a circle or line that separates the

closed bounded point sets E\ and E2; then there exists a point a' near a

such that we have

(6)
8l

z2 — a
< e

Zi — a
0  <  €  <   1,

uniformly for all Z\ on Ei and all z2 on E2.

Inequality (6) states that a certain cross-ratio is in modulus less

than some e, 0<e<l. If the plane is transformed by a linear trans-

formation of the complex variable that carries a to infinity, the given

circle (or line) on which a lies is transformed into a line L separating

the images E{ and E2 of Ei and E2. There exists a circle (near the line

L) containing all of E{ but no point of E2 in its interior, so if a{

denotes the center of this circle we have

zi — ax

z2  — «i
< é < 1

uniformly for all z{ in El and all z{ in E2 , where e is suitably chosen.

The inverse of the preceding linear transformation carries a{ into a

point a! satisfying (6). It may be noticed that a! (¿¿a) can be chosen

as near a as desired, in such a way that a and a! are mutually inverse

in a circle separating Ei and £2, where a' and Ei are separated by that

circle from a and E2. Also, if a lies at one of the two distinct inter-

sections of two circles or lines Li and L2 each of which separates Ei

and £2, and if Ei and E2 lie respectively in two of the four regions into

which L1+L2 separates the plane having no arc of Li or i2 as part of

their common boundary, then a' may be chosen near a on the circle

of the coaxal family determined by L\ and L2 bisecting the angle be-

tween L\ and L2, in direction from a toward £1.

We are now in a position to apply Lemma 1; Theorem 3 follows

at once :

Theorem 3. Let F(a) be a function of a, and of the closed bounded

point sets Ei and E2, which decreases whenever

I zi - a I

z2 — a\

decreases simultaneously for all Z\ in E\ and for all z2 in E2; if F(ct) is a

minimum, then a cannot lie on a circle or line separating Ei and E2.
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If there exists a circle or line separating £1 and £2, there exist an

infinity of them, each of which separates a largest point set £1 con-

taining £1 from a largest point set £2 containing £2; Theorem 3 shows

that a lies in £1 or in £2.

We state explicitly an application of Theorem 3:

Theorem 4. Let us set

P(z) m u (* - «;).        H«,)
llalli
Iktoll«

where the norms are Tchebycheff norms (with positive weight functions

Hi(z) and p2(z)) on the closed bounded disjoint point sets £1 and £»,

where £1 contains more than n points; if £(«,) is a minimum, a, cannot

lie on a circle or line separating £1 and E2.

If a zero, say «i, of P(z) lies on a line or circle separating £1 and

£2, and if £(ai) is a minimum, the following algebraic inequalities

result from Lemma 1 :

F(a{) =■

max

max

max

m(zi) I Zi - a{ I -u I Zi - a* I , Zi on £j

u2(z2) I z2 - a{ I • u I Z2 - a* I , z2 on £5

Mi(zi) II I *i - «*l   rD
Zi — ai

Zi — ai

max ^2(22) II I Z2 — ak I min
z2 — ai

Z2 — ai

úfFiau,

0 < e < 1, a contradiction that establishes Theorem 4.

It is not essential to suppose in Theorem 4 that Tchebycheff norms

are used, provided the norms are homogeneous of the same degree, in

the sense that for arbitrary positive continuous functions Xi(z) and

\2(z) on £1 and £2 respectively we have for some p(>0)

||Xi(«)P(«)||i á [maxXj'IIPWHi,    [minXj'llPGOH, g ||x2(z)P(z)||2.

For instance suppose £1 and £2 are rectifiable Jordan arcs or curves,

and the norms are (as below) weighted £th and gth power norms

respectively, p>0, q>0; if a zero ai of P(a) lies on a line or circle

separating £1 and £2, and if £(o¡i) is a minimum, we have
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F(a{) m

j mi(zi) | Si - <*,' |'-n | «i - a* |» | dz11

I   imfa) | Z2 - a{ |«-II I 2» - «* Ie I dz2 \

/ /«xwni*i-«ti'U*ii]

Up

U q

1/p I Si - a{

Si — on

^2(22) II | z2 - a*|«|dz2|
i/«

•min
z2 — a{

z2 — ai

á tF(ai), 0 <é <   1,

a contradiction as before.

It may be noticed that Theorems 2 and 4 overlap to a considerable

extent; on the one hand, Theorem 2 refers to separation of £i and Ej

only by a line rather than a line or circle; on the other hand, the

norms of Theorem 2 are arbitrary monotonie norms, and if the func-

tional of Theorem 4 is replaced by log /?(a;,)=log||P(z)||i — log||P(z)||2,

we have essentially the difference of two particular monotonie norms.

Under the conditions of Theorem 4, if £i and £2 lie on a circle or

line L, and if there exist circles separating them, then for the mini-

mum functional all points a, also lie on L. Whenever there exist dis-

joint circular regions containing £i and £2 respectively, these regions

contain all such a¡. If E2 consists of a single point z2, all zeros of the

polynomial P(z) minimizing F(a¡) lie in the convex hull of £2 with

respect to z2; here if m (>0) denotes min F(a}) we have ||P(z)||2

á||P(z)||i/wi, which determines max |f(z2)| over all P(z) with pre-

scribed ||P(z)||i; in this case the remark concerning the location of the

ctj is due to Szegö [2, §5] and Fekete [3, p. 344].

The preceding results have all been established by considering a

local variation of a (or ay) ; we proceed to consider the general ques-

tion of a global variation of a, and related results concerning maxima

and minima. We use the same notation for a circular region (closed

interior or exterior of a circle, or half-plane) as for its boundary, and

shall prove

Lemma 2. In the extended plane, let the circular regions C\ and C2 be

disjoint. Let a' denote the null circle in C\ belonging to the coaxal family

determined by the circles Ci and C2, and let X denote the ratio of the radius

of the image of C\ to the radius of the image of C2 when a' is transformed

to infinity, (i) If X > 3, for all z\ in & and for all z2 and a in C2 inequality

(6) holds uniformly with suitable e (<1). (ii) // X3ï3, for all z\ in C\

and for all z2 and a in C2 we have
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(7)
Zi — a

z2 — a'

Zi — a

z2 — a

(iii) If X<3, no point a' exterior to C2 exists for which (7) is valid for

all zi in G and for all z2 and a in C2, but (6) with a' as previously defined

is valid for all Zi in G, for all z2 in C2, and for each fixed a in a suitable

subregion G of C2.

Since both (6) and (7) refer to the magnitude of a certain cross-

ratio, it is no loss of generality to choose a' at infinity, and the cir-

cular regions G and G as |zi| ^i?i and |z2| i=R2 (<Ri); we suppose

too \a\ ^R2. The restrictions already made imply \z2 — a\ ú2Rt,

|zi—ct\ ^Ri—Ri, so we have

(8)
z2 — a

Zi — a

2R2

Ri — R2

with €<1, thanks to our assumption X = £i/£2>3. Inequality (8)

is equivalent to (6) with a'= oo, which establishes (i). Part (ii) fol-

lows from (8) with €=1. The first part of (iii) is a consequence of the

fact that with 1 <X<3 and with the choices z\ = R\, a = R2, z2= —R2

we have

2£2

Zi - a |      Ri - R2     X - 1

for no choice of a' exterior to G can we have

1*1-«'

>i;

>i
á 1

for all Zi in G and all z2 in G, so (7) is impossible. For the second

part of (iii), we notice that without the requirement \a\ g£2 we have

|z2 — a\ ^£2+|a|, |zi— a\ ^i?i — \a\, and (6) is valid with e<l pro-

vided we have \a\ <Ri with

£2+ [tt|

Ri-\a\
á€,

«Pi - R2

1 + «

which is true for suitably chosen e whenever |a| <(Ri—R2)/2, an

inequality which obviously implies \ct\ <£i. It will be noted that

the inequality | cc\ <(Ri—R2)/2 restricts a to the interior of a certain

circular region G interior to G; such a fixed a may be replaced by

a' = 00 with (6) valid.

We remark incidentally that (6) and (7) are considered valid even
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with a! = zi = oo, as is reasonable in view of the invariance of cross-

ratio under linear transformation.

The significance of Lemma 2 with the hypothesis of Theorem 4 is

as follows. Let Ei and E2 lie respectively in the (disjoint) circular

regions G and C2 of Lemma 2. If F(ct¡) is a minimum, it follows by

Theorem 4 that ay cannot lie exterior to both C\ and C2. Lemma 2

implies that in case (i) the point ay cannot lie in C2, by precisely the

application of (6) made in the proof of Theorem 4; in case (ii) with

X = 3, we may replace ay in C2 by a/ in G without increasing £(ay) ;

in case (iii) the point ay for minimum £(ay) cannot lie interior to a

specified circular region C» which is a subregion of C2 bounded by a

circle of the coaxal family determined by the circles G and G.

Both Theorem 2 and Theorem 4 refer to the separation of Ei and

Ei by lines and circles, and are therefore strongly reminiscent of

Bôcher's theorem [4, §4.2] to the effect that a finite point which lies

on a line or circle separating the zeros and poles of a rational function

R(z) cannot be a zero of the derivative R'(z). However, Bôcher's

theorem is not related to any analogue of Lemma 2(i) and its applica-

tion to Theorem 4. Indeed, Bôcher's theorem asserts that if two

finite disjoint circular regions G and G contain respectively all zeros

and all poles of the rational function R(z) of degree n, and if the poles

are all simple, then G and G contain each » —1 zeros of R'(z); no

zero of R'(z) can be displaced from G.

Theorems 2 and 4 consider the difference and the quotient of the

norms of a polynomial on £i and £2; likewise the sum and the prod-

uct of two monotonie norms on Ei and E2 may be considered, but

the sum and product are themselves monotonie norms on £i+E2, and

it follows by Fejér's principle that all zeros of a minimizing poly-

nomial lie in the convex hull of £i+E2.

It is not to be supposed that the present note exhausts the signifi-

cance of the methods used. The reader may consider for instance the

following:

I. Suppose £i and £2 are closed bounded disjoint point sets, and

that Ei contains at least w + 1 points. If pn(z) = (z — ai) • • • (z —an)

and the functional

max[| j>n(z)|,zon£i]

min[| pn(z)\, z on £2]

is least, the conclusion of Theorem 4 and possible  application of

Lemma 2 remain valid.

II. Under the same conditions on Ei and E2, and if E2 also contains

at least n + 1 points, and if the functional (9) with pn(z) replaced by
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■R(z) — IIî (z—ak)/(z—ßk) is least, no a* or p\ can lie on a circle or

line separating £1 and £2; Lemma 2 also applies under suitable condi-

tions.

III. Theorem 2 extends likewise to rational functions.
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