NOTE ON A PROBLEM OF DICKSON

L. CARLITZ1

1. Let $q = p^n$, where p is an odd prime. Let

$$F(x) = a_0x^k + \cdots + a_k \qquad (a_j \in GF(q), a_0 \neq 0)$$

be a polynomial of degree k such that $F(\alpha) = \beta^2$, where $\beta \in GF(q)$ for all $\alpha \in GF(q)$. The writer [1; 2] has proved the existence of a number N_k such that if $q > N_k$ then

(1)
$$F(x) = H^2(x) \quad (H(x) \in GF[q, x]);$$

moreover N^k satisfies

$$(2) N_k \le (k-1)^2.$$

If q = 11 and $F(x) = x^5 + 4$ it is easily verified that

$$F(a) \equiv \begin{cases} 5 \equiv 4^2 \pmod{11} & (aR\ 11), \\ 3 \equiv 5^2 \pmod{11} & (aN\ 11). \end{cases}$$

Clearly F(x) is not congruent (mod 11) to the square of a polynomial. We shall prove the following result.

THEOREM. The number N_k satisfies

$$(3) N_k > 2k + 1.$$

PROOF. Put q = 2m + 1 and consider the polynomial

(4)
$$F(x) = x^{(q-1)/2} + c \quad (c \in GF(q), c \neq 0).$$

Clearly F(x) does not satisfy (1).

For $a \in GF(q)$ we define a real-valued function $\psi(a)$ by means of

(5)
$$\psi(a) = \begin{cases} 1 & (a^m = 1), \\ -1 & (a^m = -1), \\ 0 & (a = 0). \end{cases}$$

To prove the theorem it will suffice to show the existence of a number $c \in GF(q)$ such that $\psi(F(a)) = 1$ for all $a \in GF(q)$. This is equivalent to the existence of c such that

(6)
$$\psi(c) = \psi(c+1) = \psi(c-1) = 1.$$

Received by the editors November 13, 1961.

¹ Supported in part by National Science Foundation grant G 16485.

Now when q = p it is known [3, p. 156] that the number $N_0(1, 1, 1)$ of incongruent $c \pmod{p}$ satisfying (6) is determined by

$$N_0(1, 1, 1) = \begin{cases} \frac{1}{8}(p-7) & (p \equiv -1 \pmod{8}), \\ \frac{1}{8}(p-3) & (p \equiv 3 \pmod{8}), \end{cases}$$

when $p \equiv 3 \pmod{4}$. When $p \equiv 1 \pmod{4}$ we have

$$N_0(1,1,1) = \frac{1}{8}(p-3+\Phi_p)-1-\frac{1}{2}\left(\frac{2}{p}\right),$$

where

$$\Phi_p = \sum_{c=0}^{p-1} \left(\frac{c^3 - c}{p} \right);$$

moreover

$$|\Phi_p| \leq 2p^{1/2}.$$

In the general case $(q = p^n)$ it is not difficult to show that

(7)
$$N_0(1, 1, 1) = \begin{cases} \frac{1}{8}(q - 7) & (q \equiv -1 \pmod{8}), \\ \frac{1}{8}(q - 3) & (q \equiv 3 \pmod{8}), \end{cases}$$

when $q \equiv 3 \pmod{4}$. When $q \equiv 1 \pmod{4}$ we have

(8)
$$N_0(1, 1, 1) = \frac{1}{8}(q - 3 + \Phi_q) - 1 - \frac{1}{2}\psi(2),$$

where

$$\Phi_q = \sum_{c \in GF(q)} \psi(c^3 - c)$$

and

(9)
$$\begin{aligned} \Phi_q &= 0 & (p \equiv 3 \pmod{4}), \\ |\Phi_q| &\leq 2q^{1/2} & (p \equiv 1 \pmod{4}). \end{aligned}$$

It follows from (7) that

$$(10) N_0(1, 1, 1) > 0$$

for $q \equiv 3 \pmod{4}$, q > 7. For $p \equiv 3 \pmod{4}$ and n even (10) holds provided q > 15. Finally when $p \equiv 1 \pmod{4}$, (10) holds provided

$$q-15 \ge 2q^{1/2}$$
 $(q \equiv 1 \pmod{8}),$
 $q-7 \ge 2q^{1/2}$ $(q \equiv 5 \pmod{8}),$

that is, provided

$$q \ge 25$$
 $(q \equiv 1 \pmod{8}),$
 $q \ge 13$ $(q \equiv 5 \pmod{8}).$

For the excluded small values of q we take

$$F(x) = x^{3} + 1$$
 $(q = 7),$
 $F(x) = x^{4} + 1$ $(q = 9),$
 $F(x) = 2x^{6} + 1$ $(q = 13),$
 $F(x) = 3x^{8} + 1$ $(q = 17).$

Since a polynomial of the form

(11)
$$F(x) = ax^m + b \qquad (a, b \in GF(q), ab \neq 0)$$

is clearly not equal to the square of a polynomial in GF[q, x] the theorem follows.

Note that for q > 9 we have proved the existence of a polynomial of the form (11) such that

$$F(\alpha) = \beta^2$$
 $(\beta \in GF(q), \beta \neq 0)$

for all $\alpha \in GF(q)$.

2. In certain cases, at least, the lower bound (3) can be improved. For example if q = 4m + 1 and we take

$$F(x) = x^m + c \qquad (c \in GF(q)),$$

then for nonzero a, a^m takes on one of the values ± 1 , $\pm \epsilon$, where $\epsilon^2 = -1$. This leads to consideration of the sum

$$S = \sum_{c} \{1 + \psi(c)\} \{1 + \psi(c+1)\} \{1 + \psi(c-1)\} \cdot \{1 + \psi(c+\epsilon)\} \{1 + \psi(c-\epsilon)\},$$

where the summation is over all $c \neq 1, -1, \epsilon, -\epsilon$. Using known estimates we find that S > 0 provided q exceeds a certain numerical bound (independent of k). It follows that

$$N_k > 4k + 1$$

at least for $q \equiv 1 \pmod{4}$ and k sufficiently large.

REFERENCES

- 1. L. Carlitz, A problem of Dickson's, Duke Math. J. 14 (1947), 1139-1140.
- 2. —, A problem of Dickson, Duke Math. J. 19 (1952), 471-474.
- 3. H. Hasse, Vorlesungen über Zahlentheorie, Springer-Verlag, Berlin, 1950.

DUKE UNIVERSITY