IDEMPOTENT MEASURES ON A COMPACT TOPOLOGICAL SEMIGROUP

M. HEBLE AND M. ROSENBLATT1

1. Introduction. Let S be a compact topological (Hausdorff) semigroup. Consider any probability measure ν regular on S. Some of the limit properties of the average of the convolution sequence

(1)
$$\frac{1}{n} \sum_{i=1}^{n} \nu^{(i)} = \nu_n$$

were discussed in [5]. Let $\Sigma(\nu)$ be the support (or spectrum) of ν . One can just as well take S as the closure of U_n ($\Sigma(\nu)$)ⁿ = $S(\nu)$ since all the convolutions $\nu^{(j)}$ are concentrated on $S(\nu)$. It was shown that $\lim_{n\to\infty} \nu_n = \mu$ exists in the sense that $\lim_{n\to\infty} \int f d\nu_n = \int f d\mu$ for every continuous f on S. Further, μ is regular with support the kernel K (minimal two-sided ideal) of $S(\nu)$ and is idempotent, that is,

(2)
$$\mu^{(2)} = \mu$$
.

In [5] the definition of the convolution of two regular measures ν , μ on S was introduced as follows. Let $\mathfrak{B} = \mathfrak{B}(S)$ be the Borel field generated by the open sets of S. If $B \in \mathfrak{B}(S)$, $\nu * \mu(B)$ was given by

$$\nu * \mu(B) = \int c_B(vu)(\nu \times \mu)(d(v, u))$$

where c_B is the characteristic function of the set B and $v \times \mu$ is the product measure generated by v, μ on $S \times S$. This is not valid for all compact Hausdorff semigroups since $A_B = \{(v, u) | vu \in B\}$ may not be in the product Borel field $\mathfrak{B}(S) \times \mathfrak{B}(S)$ even though $B \in \mathfrak{B}(S)$. It is valid for separable Hausdorff semigroups. However, one can generally introduce the convolution of two regular measures v, μ on a compact Hausdorff semigroup S as follows. Given any continuous f on S, let

$$\int \left\{ \int f(vu)\nu(dv) \right\} \mu(du) = L(f).$$

This defines a continuous functional of the continuous functions on S. By the Riesz theorem [1] on such functionals, there is a regular

Presented to the Society July 12, 1961; received by the editors July 14, 1961 and, in revised form, December 27, 1961.

¹ This research was supported by the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.

measure on $\mathfrak{B}(S)$ determined by L(f)

$$L(f) = \int f(u)(\nu * \mu)(du)$$

which we shall call the convolution $\nu * \mu$ of ν , μ . With this definition of the convolution $\nu * \mu$, the proofs of the results cited in [5] can be simply modified so as to hold for the case of a general compact Hausdorff semigroup S. Kernel semigroups K are rather special semigroups and are often referred to as completely simple semigroups [6]. Every compact completely simple semigroup can be represented as the product space $T \times X \times Y$ of a compact topological group T and compact Hausdorff spaces X, Y where the multiplication of two elements s = (t, x, y), s' = (t', x', y') is given by

(3)
$$ss' = (t, x, y)(t', x', y') = (t\phi(x, y')t', x', y)$$

with ϕ a continuous function on the product space $X \times Y$ into T [6]. We can therefore identify K with such a space $T \times X \times Y$ and the corresponding ϕ function.

In [5] it was shown that every idempotent measure μ on a finite completely simple semigroup K with support the whole semigroup is a $\overline{\mu}$ measure, that is, μ is a product measure

$$\bar{\mu} = \chi \times \alpha \times \beta$$

where χ is the normed Haar measure $(\chi(T)=1)$ of the finite group T and α and β are probability measures on X and Y respectively. This note extends the above result to any compact Hausdorff semigroup.

THEOREM. Let μ be a regular idempotent probability measure on a compact Hausdorff semigroup. Then μ has a completely simple subsemigroup K as its support. Further μ is a $\bar{\mu}$ measure so that if K has the representation $T \times X \times Y$ then on $\mathfrak{B}(T) \times \mathfrak{B}(X) \times \mathfrak{B}(Y)$

$$\mu = \chi \times \alpha \times \beta$$

where χ is the normed Haar measure of the group T and α , β are regular probability measures on X, Y respectively.

COROLLARY. Given a regular measure ν on the compact Hausdorff semigroup S, the sequence of averaged convolution measures

$$\nu_n = \frac{1}{n} \sum_{i=1}^n \nu^{(i)}$$

converges to a $\overline{\mu}$ measure with support the kernel of $S(\nu)$.

2. **Proof of the theorem.** We shall make use of a number of lemmas to prove the theorem. For convenience let

(4)
$$As^{-1} = \{s' \mid s's \in A\}.$$

LEMMA 1. Let μ be a regular probability measure on the compact Hausdorff semigroup S. Then for each $s \in S$, the measure $\mu(As^{-1})$, $A \in \mathfrak{B}(S)$, is regular on S.

Here $\mathfrak{B}(S)$ is the Borel field generated by the open sets on S. By the regularity of μ on S, given any $\epsilon > 0$, there is a closed set $C \subset As^{-1}$ such that $\mu(As^{-1} - C) < \epsilon$. Let B = Cs. By the continuity of the multiplicative operation, we see that B is closed. Further $B \subset A$. Thus $\mu((A-B)s^{-1}) < \epsilon$ since $C \subset Bs^{-1} \subset As^{-1}$.

LEMMA 2. If $A \in \mathfrak{B}(S)$ and μ is a regular measure on the compact Hausdorff semigroup S, $\mu(As^{-1})$ is a Borel measurable function of s.

Let η denote the class of continuous functions f on S with $0 \le f \le 1$. Further, given any set A, let \overline{A} denote the complement of A. First let O be an open set. Set

$$A_{\alpha} = \left\{ s \mid \mu(Os^{-1}) > \alpha \right\}.$$

Now by the regularity of $\mu(\cdot s^{-1})$ (see [1; 2])

$$\mu(Os^{-1}) = \sup_{f \in \eta: f = 0 \text{ on } \bar{\delta}} \int f(u)\mu(dus^{-1}) = \sup_{f \in \eta: f = 0 \text{ on } \bar{\delta}} \int f(us)\mu(du).$$

Given any $s \in A_{\alpha}$ there is an $\epsilon > 0$ such that $\mu(Os^{-1}) > \alpha + \epsilon$. But then there is a function $f_{\bullet} \in \eta$ with $f_{\bullet} = 0$ on \overline{O} such that

$$\int f_{\bullet}(us)\mu(du) > \alpha + \epsilon/2.$$

The set of points $\{z | \iint_s (uz)\mu(du) > \alpha + \epsilon/2\}$ is an open set containing s and is a subset of A_α . Hence A_α is open. This implies that $\mu(Os^{-1})$ is Borel measurable in s.

The open sets are a field. Further the class of sets $A \in \mathcal{B}(S)$ for which $\mu(As^{-1})$ is Borel measurable is a monotone class. Hence this class is a Borel field and must coincide with $\mathcal{B}(S)$ (see [4]).

LEMMA 3. Given any set $A \in \mathfrak{B}(S)$ and ν , μ regular probability measures on the compact Hausdorff semigroup S,

(5)
$$\nu * \mu(A) = \int \nu(As^{-1})\mu(ds).$$

It is enough to show this for an open set O since it will then follow for general $A \in \mathcal{B}(S)$ by the regularity of $\nu * \mu$. Now

$$\nu * \mu(O) = \sup_{f \in \mathfrak{q}: f = 0 \text{ on } \delta} \int \left\{ \int f(vu)\nu(dv) \right\} \mu(du)$$

$$\leq \int \left\{ \sup_{f \in \mathfrak{n}: f = 0 \text{ on } \delta} \int f(vu)\nu(dv) \right\} \mu(du) = \int \nu(Os^{-1})\mu(ds).$$

Consider any fixed $\epsilon > 0$. Let $A_{k,n} = \{ s \mid k/2^n \le \nu(Os^{-1}) < (k+1)/2^n \}$, $k = 0, 1, \dots, 2^n$, with $2^{-n+2} < \epsilon$. Then

$$\left| \sum_{k=0}^{2^n} \frac{k}{2^n} \mu(A_{k,n}) - \int \nu(Os^{-1}) \mu(ds) \right| < \frac{1}{2^n} \cdot$$

There is a closed set $C_{k,n} \subset A_{k,n}$ with

$$\mu(A_{k,n}-C_{k,n})<\epsilon/2^{n+2}, \qquad k=0,1,\cdots,2^n.$$

Given any $s \in C_{k,n}$, there is a continuous function $f_s \in \eta$, $f_s = 0$ on \overline{O} , such that

$$\int f_{s}(vs)\nu(dv) > \nu(Os^{-1}) - \frac{1}{2^{n}}.$$

The set $B_{\bullet} = \{z \mid \int f_{\bullet}(vz)\nu(dv) > k/2^n - 1/2^n\}$ is an open set containing s. Hence the sets B_{\bullet} , $s \in C_{k,n}$, are an open covering of $C_{k,n}$. There is a finite subcovering $B_{\bullet_1}, \dots, B_{\bullet_j}$ of $C_{k,n}$. Let $f_{k,n}(s) = \max_{i=1,\dots,j} f_{\bullet_i}(s)$. Clearly

$$\int f_{k,n}(vz)\nu(dv) > \frac{k-1}{2^n}$$

for all $z \in C_{k,n}$. Further $f_{k,n} \in \eta$, $f_{k,n} = 0$ on \overline{O} . In this way we obtain such a function $f_{k,n}$ for $C_{k,n}$, $k = 0, 1, \dots, 2^n$. Let $f(s) = \max_{k=0,1,\dots,2^n} f_{k,n}(s)$. Then

$$\int \left\{ \int f(vz)\nu(dv) \right\} \mu(dz) > \sum_{k=0}^{2^n} \frac{k-1}{2^n} \mu(C_{k,n})$$

$$> \int \nu(Os^{-1})\mu(ds) - \frac{2}{2^n} - \frac{\epsilon}{2} > \int \nu(Os^{-1})\mu(ds) - \epsilon$$

where $f \in \eta$, f = 0 on \overline{O} . Since this holds for any $\epsilon > 0$, we have the desired conclusion for open sets.

Let $F_n(F_n \subset A)$, $O_n(A \subset O_n)$ be nondecreasing and nonincreasing sequences of closed and open sets such that $\nu * \mu(F_n)$, $\nu * \mu(O_n)$

 $\rightarrow \nu * \mu(A)$ as $n \rightarrow \infty$ for a fixed $A \in \mathfrak{B}(S)$. The existence of such sequences follows from the regularity of $\nu * \mu$. But then

$$\nu * \mu(A) = \lim_{n} \nu * \mu(O_{n}) = \lim_{n} \int \nu(O_{n}s^{-1})\mu(ds)$$

$$\geq \int \nu(As^{-1})\mu(ds) \geq \lim_{n} \int \nu(F_{n}s^{-1})\mu(ds)$$

$$= \lim_{n} \nu * \mu(F_{n}) = \nu * \mu(A).$$

Thus Lemma 3 holds for general $A \in \mathfrak{B}(S)$. Suppose μ is an idempotent measure on S. Then

$$\mu(As^{-1}) = \int \mu(As^{-1}s'^{-1})\mu(ds') = \int \mu(A(s's)^{-1})\mu(ds')$$
$$= \int \mu(As'^{-1})\mu(ds's^{-1}).$$

By Theorem 14 of [3] we already know that an idempotent probability measure must have a completely simple semigroup as its support. From this point on let us take S a compact completely simple semigroup with representation $T \times X \times Y$ and corresponding function ϕ .

Suppose μ is an idempotent measure on S with support S. Let

$$(6) S_x = \{s \mid x(s) = x\},$$

that is, S_x is the subset of points in S whose x coordinate x(s) in representation () of the semigroup is the fixed point x in X. Then $P(s, A) = \mu(As^{-1})$ is an idempotent Markov transition measure (see [4]) for $A \in \mathfrak{B}(S_x)$, $s \in S_x$, that is

(7)
$$P(s, A) = \int_{S_x} P(s, ds') P(s', A).$$

 $\mathfrak{B}(S_z)$ is the Borel field on S_z induced by $\mathfrak{B}(S)$. We shall call $B \in \mathfrak{B}(S_z)$ an *invariant set* if

$$(8) P(s, B) = 1$$

for all $s \in B$. We say that S_x is *irreducible* if one cannot find two disjoint nonvacuous sets A, $B \in \mathfrak{C}(S_x)$ such that

(9)
$$P(s, A) \equiv 1 \quad \text{for all } s \in A,$$
$$P(s, B) \equiv 1 \quad \text{for all } s \in B.$$

LEMMA 4. Let μ be a regular idempotent probability measure with support the compact completely simple semigroup S. Then S_x (for every $x \in X$) is irreducible with respect to $P(s, A) = \mu(As^{-1})$, $A \in \mathfrak{B}(S_x)$, $s \in S_x$.

Suppose S_x is not irreducible. Then there are two disjoint non-vacuous invariant sets A, $B \in \mathfrak{B}(S_x)$. Both these invariant sets must be dense in S_x . For consider any invariant set A. Let s be any point of S_x . Consider any open neighborhood N_s of s and take a any point of A. N_sa^{-1} is open by the continuity of the multiplicative operation. But then $P(a, N_s) = \mu(N_sa^{-1}) > 0$ and hence N_s contains an element of A. Thus A is dense in S_x .

Let a be an element of A. By the regularity of $\mu(\cdot a^{-1})$ on S_x there is a closed set $C \subset A$ such that $\mu(Ca^{-1}) > 1 - \epsilon > 0$. But $S_x - C$ is open in S_x and contains B. B is dense in S_x so that $S_x - C$ is all of S_x . However, this contradicts $\mu(Ca^{-1}) > 0$.

LEMMA 5. Let μ be an idempotent probability measure with support the compact completely simple semigroup S. Then $P(s, A) = \mu(As^{-1})$ with $s \in S_x$, $A \in \mathfrak{B}(S_x)$ is independent of s.

Consider $P(s, A) = \mu(As^{-1})$ with $s \in S_x$, $A \in \mathfrak{B}(S_x)$. Let

(10)
$$f(s) = \int_{S_x} P(s, ds') f(s')$$

for f a bounded function on S_x measurable with respect to $P(s, \cdot)$ for every s. Since $P(s, \cdot)$ is an idempotent transition probability function (see (7))

(11)
$$\int_{s} P(s, ds') \left[\overline{f}(s') - f(s') \right] \equiv 0.$$

We shall call f(s) an almost invariant function if the set $E_f = \{s' | f(s') \neq \bar{f}(s')\}$ is of zero $P(s, \cdot)$ measure for every s. Consider a bounded function f such that

$$(12) \bar{f}(s) \ge f(s)$$

except possibly for a set G_f of zero $P(s, \cdot)$ measure for every s. Such a function is an almost invariant function since by (11) the set on which $f(s) \neq \bar{f}(s)$ is of zero $P(s, \cdot)$ measure for all s.

If f, g are almost invariant, then $\max(f, g)$ is almost invariant. The set of almost invariant functions is a linear space and is closed under bounded pointwise convergence. This implies that if f is an almost invariant function then for any fixed α the characteristic function $c_{A_{\alpha}}(s)$ of the set

$$(13) A_{\alpha} = \left\{ s \,\middle|\, f(s) > \alpha \right\}$$

is almost invariant. For consider $g(s) = \max(f(s) - \alpha, 0)$ which is almost invariant. Let $h_n(s) = \min(ng(s) - 1, 0) + 1$. But $c_{A_\alpha}(s) = \lim_n h_n(s)$, that is, it is the limit of almost invariant functions and hence almost invariant. Thus, except for a set E which is of $P(s, \cdot)$ measure zero for every s, $c_{A_\alpha}(s) = \bar{c}_{A_\alpha}(s)$. If $s \in A_\alpha - E$ then

(14)
$$P(s, A_{\alpha} - E) = P(s, A_{\alpha}) = 1.$$

Similarly if $s \in \overline{A}_{\alpha} - E$ (\overline{A} is the complement of A) then

(15)
$$P(s, \overline{A}_{\alpha} - E) = P(s, \overline{A}_{\alpha}) = 1.$$

Thus, if they are nonvacuous, $A_{\alpha}-E$ and $\overline{A}_{\alpha}-E$ are invariant sets. Now consider setting f(s)=P(s,A) for any fixed $A \in \mathfrak{B}(S_x)$. Clearly P(s,A) is almost invariant. The argument given above implies that there is an α such that

$$(16) P(s, A) \equiv \alpha$$

for all s except those in a set E_A of $P(s, \cdot)$ measure zero for every s. But then

(17)
$$P(s, A) = \int_{S_{\sigma}} P(s, ds') P(s', A) = \int_{\tilde{E}_A} P(s, ds') P(s', A) \equiv \alpha$$

for all s, whether outside E_A or in E_A . The proof of Lemma 5 is complete.

We are now ready to finish the proof of the theorem. Let us look at

(18)
$$\mu((U \times V \times W)s^{-1})$$

where $U \times V \times W$ is a product set with $U \in \mathfrak{B}(T)$, $V \in \mathfrak{B}(X)$, $W \in \mathfrak{B}(Y)$. Notice that if (18) is positive we must have $x(s) \in V$. Now

$$(19) \ (U \times V \times W)s^{-1} = \left\{ s' \mid t(s') \in Ut(s)^{-1}\phi(x(s'), y(s))^{-1}, y(s') \in W \right\}.$$

Lemma 5 implies that (18) is independent of s for which $x(s) \in V$ and therefore by (19)

(20)
$$\mu((U \times V \times W)s^{-1}) = \mu((Ut \times V \times W)s^{-1})$$

for all $t \in T$ if $x(s) \in V$. Expression (18) is zero if $x(s) \notin V$. But this implies that

(21)
$$\mu((U \times V \times W)s^{-1}) = \chi(U)\mu((T \times V \times W)s^{-1})$$

where χ is the normed Haar measure of T (the support of (18) with V, W fixed and $\mu(T \times V \times W) > 0$ is all of T). However

(22)
$$\mu((T \times V \times W)s^{-1}) = \beta(W)$$

if $x(s) \in V$ and zero otherwise. Now

$$\mu((U \times V \times W)) = \int \mu((U \times V \times W)s^{-1})\mu(ds)$$

$$= \int_{x(s) \in V} \chi(U)\beta(W)\mu(ds) = \chi(U)\alpha(V)\beta(W).$$

The proof of the theorem is complete.

REFERENCES

- 1. N. Dunford and J. Schwartz, *Linear operators*, Vol. I, Interscience, New York, 1958.
 - 2. P. R. Halmos, Measure theory, Van Nostrand, New York, 1951.
- 3. B. M. Kloss, Probability distributions on bicompact topological groups, Theor. Probability Appl. 4 (1959), 237-270.
 - 4. M. Loève, Probability theory, Van Nostrand, New York, 1961.
- 5. M. Rosenblatt, Limits of convolution sequences of measures on a compact topological semigroup, J. Math Mech. 9 (1960), 293-306.
- 6. A. D. Wallace, The Rees-Suschkewitsch structure theorem for compact simple semi-groups, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 430-432.

Syracuse University and Brown University