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1. Introduction. Let 5 be a compact topological (Hausdorff) semi-

group. Consider any probability measure v regular on 5. Some of the

limit properties of the average of the convolution sequence

(1) - ¿ r<»  =  Vn
n ,_i

were discussed in [5]. Let 2l(v) be the support (or spectrum) of v.

One can just as well take 5 as the closure of U„ (2(j'))n = 5(i') since

all the convolutions pW are concentrated on S(v). It was shown that

limnj.00yB=/x exists in the sense that limn-.K ffdvn= ffdu for every con-

tinuous f on 5. Further, /z is regular with support the kernel K (mini-

mal two-sided ideal) of S(v) and is idempotent, that is,

(2) U™ = u.

In [5] the definition of the convolution of two regular measures v, p

on 5 was introduced as follows. Let (S> = (B(5) be the Borel field gener-

ated by the open sets of 5. If P£(B(5), v * u(B) was given by

v * u(B) = J cB(vu)(v X u)(d(v, u))

where Cb is the characteristic function of the set B and vXu is the

product measure generated by v, fi on SXS. This is not valid for all

compact Hausdorff semigroups since Ab = {(v, u)\vuEB} may not

be in the product Borel field (B(5) X«(5) even though P£(B(5). It is

valid for separable Hausdorff semigroups. However, one can generally

introduce the convolution of two regular measures v, ¡lona, compact

Hausdorff semigroup 5 as follows. Given any continuous / on 5, let

f(vu)v(dv)\u(du) = L(f).

This defines a continuous functional of the continuous functions on

5. By the Riesz theorem [l ] on such functionals, there is a regular
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measure on (B(5) determined by L(f)

L(f)=Jfu)(v*p)(du)

which we shall call the convolution v * p of v, p. With this definition

of the convolution v * p, the proofs of the results cited in [5] can be

simply modified so as to hold for the case of a general compact Haus-

dorff semigroup 5. Kernel semigroups K are rather special semi-

groups and are often referred to as completely simple semigroups [ó].

Every compact completely simple semigroup can be represented as

the product space TXXX F of a compact topological group T and

compact Hausdorff spaces X, Y where the multiplication of two ele-

ments s = (t, x, y), s' = (t', x', y') is given by

(3) ss' = (/, x, y) (t\ x', y') = (td>(x, y')t', x', y)

with <t> a continuous function on the product space XX Y into T [ó].

We can therefore identify K with such a space TXXXY and the

corresponding <b function.

In [5] it was shown that every idempotent measure p on a finite

completely simple semigroup K with support the whole semigroup is

a ß measure, that is, p is a product measure

ß=XXaXß

where x is the normed Haar measure (x(T) — 1) of the finite group T

and a and ß are probability measures on X and F respectively. This

note extends the above result to any compact Hausdorff semigroup.

Theorem. Let p be a regular idempotent probability measure on a

compact Hausdorff semigroup. Then p has a completely simple subsemi-

group K as its support. Further p is a ß measure so that if K has the

representation TxXX Y then on (B(7)X(B(I)X(B(7)

u = xXaXß

where x ** the normed Haar measure of the group T and a, ß are regular

probability measures on X, Y respectively.

Corollary. Given a regular measure v on the compact Hausdorff

semigroup S, the sequence of averaged convolution measures

1   n

Vn « — £ .<'■>
»   3-1

converges to a ß measure with support the kernel of 5(v).
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2. Proof of the theorem. We shall make use of a number of lemmas

to prove the theorem. For convenience let

(4) As'1 = {í'|í'í£ A}.

Lemma 1. Let p. be a regular probability measure on the compact

Hausdorff semigroup S. Then for each s ES, the measure n(As~l),

AE<$>(S), is regular on S.

Here (B(5) is the Borel field generated by the open sets on 5. By

the regularity of ¡x, on 5, given any e>0, there is a closed set CEAs~l

such that ß(As~1 — C) <e. Let B = Cs. By the continuity of the multi-

plicative operation, we see that B is closed. Further BEA. Thus

H((A-B)s~1)<e since CCBs~lCAs-\

Lemma 2. If AE<R(S) and u is a regular measure on the compact

Hausdorff semigroup S, ß(As~l) is a Borel measurable function of s.

Let 7] denote the class of continuous functions f on S with 0 a/a 1.

Further, given any set A, let A denote the complement of A. First

let 0 be an open set. Set

Aa = {s\ii(Os~l) > a}.

Now by the regularity of u(-s~l) (see [l; 2])

/i(Oj-1) =      sup        I  f(u)ß(dus~1) =      sup        I f(us)n(du).
/Si»;/=0 on ö J feri;i-0 on ö J

Given any sEAa there is an e>0 such that ¡i(0s~l) >a-\-e. But then

there is a function/,£ij with/, = 0 on 0 such that

/
f,(us)ti(du) > a + e/2.

The set of points {z\ ffi(uz)p(du)>a-\-e/2} is an open set containing

s and is a subset of Aa. Hence Aa is open. This implies that u(Os~l)

is Borel measurable in 5.

The open sets are a field. Further the class of sets ^4£(B(5) for

which n(As_1) is Borel measurable is a monotone class. Hence this

class is a Borel field and must coincide with 03(5) (see [4]).

Lemma 3. Given any set vl£(B(5) and v, n regular probability meas-

ures on the compact Hausdorff semigroup S,

(5) v*u(A) = f v(As-l)ii(ds).
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It is enough to show this for an open set 0 since it will then follow

for general AE&iS) by the regularity of v * p. Now

v * piO) =      sup I   <   I fvu)vidv)> pidu)
/6«;/=o on 5 J    (•/ ;

ûf\      sup        \ fvu)vidv)\pidu) =  f viOs-^pids).
•I     \ /ei;/=o on 5 «/ ) J

Consider any fixed e>0. Let Ak,n= [s\ k/2núviOs~v) <(ife+l)/2n},

fe = 0, 1, • • • , 2", with 2--+2<e. Then

Z^-KAk.n)- f viOs-i)pids)
t-o 2" J

1
< —

2»Jt-0

There is a closed set C*,nC-4*,n with

piAk.n - Ck,n) < e/2»+2,       k = 0, 1, • • • , 2».

Given any sECk.n, there is a continuous function /.Gf,/. = 0 on (5,

such that

/

1
f,ivs)vidv) > viOs-1)-

The set B,= [z\ff,ivz)vidv)>k/2n — l/2n] is an open set containing

s. Hence the sets B„ sGG*,„, are an open covering of C*,n. There is a

finite subcovering Bn, • • • , B,¡of Ci,„. Let/*,n(s)=maxi_i,...,y/,i(s).

Clearly

/

k- 1
fk,nil>Z)V(dv)   >

for all zECk.n. Further/t.„G»7,/*,n = 0 on Ü. In this way we obtain

such a function /*,» for Ck,%, & = 0, 1, • • • , 2\ Let /(s)

= maxi_o.i,...,2-/t,B(s). Then

J {J/WK*)}/»W > Z ̂ m(C*,0

J viOs-i)pids) - — - j > f viOs~l)pids) -

where fEv, /=0 on Ö. Since this holds for any e>0, we have the

desired conclusion for open sets.

Let FniFnEA), OniAEOn) be nondecreasing and nonincreasing

sequences of closed and open sets such that v*piFn), v * piOn)
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—► v * p(A) as m—>a> for a fixed AE®(S). The existence of such se-

quences follows from the regularity of v * ft. But then

v* u(A) = lim v * m(0„) = lim   í »(OnS-^utfs)
n ft     J

=  f v(As-x)y.(ds) è lim J v(Fns~1)n(ds)

= lim j» * u(Fn) = v * u(A).
n

Thus Lemma 3 holds for general A £03(5).

Suppose m is an idempotent measure on 5. Then

mUí-1) =  ( u(As-ls'-l)n(ds') =  f mUC/í)-1)^')

=  f ^(^/-^(¿í'í-1).

By Theorem 14 of [3] we already know that an idempotent proba-

bility measure must have a completely simple semigroup as its sup-

port. From this point on let us take 5 a compact completely simple

semigroup with representation TXXX Fand corresponding function

Suppose ¡t is an idempotent measure on 5 with support 5. Let

(6) 5«= {*| *(*) = *},

that is, Sx is the subset of points in 5 whose x coordinate x(s) in

representation ( ) of the semigroup is the fixed point x in X. Then

P(s, A)—ß(As-1) is an idempotent Markov transition measure (see

[4]) for AE®(SX), sESx, that is

(7) P(s, A)= f   P(s, ds')P(s', A).
** Sx

<S>(SX) is the Borel field on Sx induced by (B(5). We shall call P£(B(5,)
an invariant set if

(8) P(s, B) = 1

for all sEB. We say that Sx is irreducible if one cannot find two dis-

joint nonvacuous sets A, BE<R(Sx) such that

P(s, A) = 1       for all s £ A,

P(s, B) s 1       for all s £ B.
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Lemma 4. Let pbea regular idempotent probability measure with sup-

port the compact completely simple semigroup 5. Then Sx ifor every

xEX) is irreducible with respect to Pis, A)=piAs~1), AE®iSx),

sESx.

Suppose Sx is not irreducible. Then there are two disjoint non-

vacuous invariant sets A, BE(S>iSx). Both these invariant sets must

be dense in Sx. For consider any invariant set A. Let s be any point of

Sx. Consider any open neighborhood N, of s and take a any point of

A. Nta'1 is open by the continuity of the multiplicative operation.

But then P(a, Nt) = /i(7V,c_1) > 0 and hence TV, contains an element

of A. Thus A is dense in Sx.

Let a be an element of A. By the regularity of pi-a~l) on Sx there

is a closed set CEA such that piCa~l) > 1 —e>0. But Sx — C is open

in Sx and contains 73. B is dense in Sx so that Sx— C is all of Sx. How-

ever, this contradicts ju(Ca-1)>0.

Lemma 5. Let p be an idempotent probability measure with support

the compact completely simple semigroup S. Then Pis, A)=piAs~l)

with sESx, AE<S>iSx) is independent of s.

Consider Pis, A)=piAs~x) with sESx, AE®iSx). Let

(10) /(*) = f   Pis, ds')fs')
Sx

for/a bounded function on Sx measurable with respect to Pis, •) for

every s. Since Pis, •) is an idempotent transition probability function

(see (7))

(11) f PfoáíODV) -fis')] -o.
J Sx

We shall call fis) an almost invariant function if the set E¡

= {s'|/(s') 9^'fis')} is of zero Pis, •) measure for every s. Consider a

bounded function / such that

(12) /(*)£/«

except possibly for a set G/ of zero Pis, •) measure for every s. Such

a function is an almost invariant function since by (11) the set on

which fis) ^/(s) is of zero P(s, •) measure for all 5.

If/, g are almost invariant, then max(/, g) is almost invariant. The

set of almost invariant functions is a linear space and is closed under

bounded pointwise convergence. This implies that if / is an almost

invariant function then for any fixed a the characteristic function

caœ(s) of the set
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(13) Aa={s\f(s)>a}

is almost invariant. For consider g(s) = max(/(s) — a, 0) which is al-

most invariant. Let hn(s) = min(wg(s) — 1, 0) + 1. But CAa(s)

= limn hn(s), that is, it is the limit of almost invariant functions and

hence almost invariant. Thus, except for a set E which is of P(s, •)

measure zero for every s, cAa(s) — CAa(s). If sEAa — E then

(14) P(s, Aa-E) = P(s, Aa) = 1.

Similarly if sEAa — E (A is the complement of .4) then

(15) P(s, Aa - E) = P(s, Ja) = 1.

Thus, if they are nonvacuous, Aa — E and Aa — E are invariant sets.

Now consider setting/(s) =P(s, A) for any fixed A E<$>(SX). Clearly

P(s, A) is almost invariant. The argument given above implies that

there is an a such that

(16) P(s, A) s a

for all s except those in a set Ea of P(s, ■) measure zero for every j.

But then

(17) P(s, A) =  f   P(s, ds')P(s', A)= f   P(s, ds')P(s', A) = a
J Sx J &A

for all s, whether outside Ea or in Ea. The proof of Lemma 5 is com-

plete.

We are now ready to finish the proof of the theorem. Let us look at

(18) u((U XV X W)s~1)

where UX FXlFis a product set with t/£(B(F), F£(B(X), WE®(Y).

Notice that if (18) is positive we must have x(s)E V. Now

(19) (U X V X W)s-i = {s' I t(s') E Ut(s)-i4>(x(s'),y(s))-\y(s') £ IF}.

Lemma 5 implies that (18) is independent of s for which x(s) £ Fand

therefore by (19)

(20) n((U X V X W)s~l) = »((Ut X V X W)s~*)

for all tET if x(s)EV. Expression (18) is zero if x(s)(£V. But this

implies that

(21) ß((U XV X W)s-i) = x(U)ß((T XV X W)s~1)

where x is the normed Haar measure of T (the support of (18) with

V, W fixed and u(TX VXW) >0 is all of T). However
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(22) püT XV X W)s-*) = ßiW)

if x(s) E V and zero otherwise. Now

p((U X V X W)) =  f p((U XV X W)s~l)p(ds)

xiU)ßiW)pids) = xiU)aiV)ßiW).

The proof of the theorem is complete.
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