
ON SOME OPEN QUESTIONS CONCERNING
STRICTLY SINGULAR OPERATORS1-2

SEYMOUR GOLDBERG AND EDWARD O. THORP

T. Kato introduces the following concept of a strictly singular

operator in [3].

Definition. Let X and Y be Banach spaces and let T be a bounded

linear operator mapping X into F. T is said to be strictly singular if

given any infinite dimensional subspace M of X, T restricted to M is

not an isomorphism (i.e., linear homeomorphism).

In particular, every compact operator is strictly singular. Kato

proceeds to show that the space S of strictly singular operators

possesses some of the important features of the space of compact oper-

ators, e.g., S is a closed subspace of the space of bounded linear oper-

ators from A to F. If X= Y, then S is a closed ideal. If X and F are

Hubert spaces, then every strictly singular operator from A to F is

compact.

The following two questions, posed by Kato, are answered below.

(1) Is every strictly singular operator compact?

(2) Is the conjugate of a strictly singular operator strictly singular?

Theorem.3 (a) Every bounded linear operator from k to lp or from lp

to l2, l^p9i2, oo is strictly singular.

(b) Let X be a Banach space which does not contain an infinite di-

mensional reflexive subspace. Then every bounded linear operator map-

ping X into a reflexive space is strictly singular. Also any bounded linear

operator mapping a reflexive space into X is strictly singular.

Remarks, (i) R. S. Phillips exhibited (unpublished) a strictly

singular operator which is not compact. Theorem 1 shows that S can

indeed be a "much larger" space than the space of compact linear

operators.
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' It has been pointed out to the authors by R. J. Whitley that essentially the same

proof used in (a) can be applied to prove that every bounded linear operator from

lp to lq, Kp, q < x, p 9aq, is strictly singular. As above, M is isomorphic to a subspace

of/„hence by [l,Theorem l,p. 194], l, is isomorphic toa subspace of M and hence to

a subspace of lp. This, however, contradicts [l, Theorem 7, p. 205].
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(ii) h and c0 are spaces which do not contain any infinite dimen-

sional reflexive subspaces. To see this, suppose M were such a sub-

space of ii. Since h is not reflexive, it is not isomorphic to a subspace

of M. But by [l, Theorem 1, p. 194], this can only be if M is finite

dimensional, which is a contradiction. The argument for c0 is the

same.

Proof of part (a). Suppose Kp7£2, » . Let T: h-+lp be bounded

and linear. Suppose there exists an infinite dimensional subspace of

M of l2 such that T restricted to M has a bounded inverse. Then T

restricted to M, the closure of M in l2, has a bounded inverse so that

M is isomorphic to a subspace of lp. Since M is a separable Hubert

space, it is equivalent to l2. Thus l2 is isomorphic to a subspace of lp.

This, however, contradicts a theorem due to Banach [l, Theorem 7,

p. 205]. The proof that any bounded linear map from lpto l2, 1 <p9£2,

m is strictly singular is similar to the one just given. Part (b) in-

cludes the case for p= 1.

Proof of part (b). Let X be as in (b). Suppose Y is reflexive. If

T:X-^Y is bounded and linear but not strictly singular, then X

would contain a closed infinite dimensional subspace N which is iso-

morphic to a closed subspace of Y. Thus N is reflexive which cannot

be. The same argument can be used to show that T: Y—>X is strictly

singular.

For question (2) we consider the

Example. Let T be a continuous linear operator mapping h onto l2.

That such a map exists is a result of a theorem of Banach and Mazur

[2, p. Ill], which states that given any separable Banach space X,

there exists a continuous linear operator which maps h onto X. Now

T is strictly singular by the above theorem. However, by [l, Theorem

4, p. 148], T' has a bounded inverse. Thus T' is not strictly singular.

Remark. Any bounded linear operator between Banach spaces

whose range does not contain any infinite dimensional closed subspace

is clearly strictly singular (such operators were considered by R. S.

Phillips in his unpublished note). The above example shows that a

strictly singular operator need not have this property. The Kato and

Phillips concepts coincide when the domain space X is l2. Thus when-

ever the bounded operators from l2—* F are strictly singular, they have

the Phillips property as well.

The following example shows that a strictly singular operator can

have a nonseparable range in contrast to the well-known fact that a

compact operator always has a separable range.

Example. If Q is an arbitrary set, lP(Q), 1 <p< °°, is the space of

scalar valued functions x with domain Q, having at most countably
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many nonzero coordinates, and such that ||x|| = Í2Zísq \xiq) \p)1I" is

finite. It is a Banach space with this norm. We assert that all the

continuous operators T: hiQ)—>lPiQ), 2<p<<*>, where Q is an un-

countable set, are strictly singular and that the inclusion map is such

an operator and has a nonseparable range.

(1) To see that all the operators are strictly singular, suppose some

T is not. Then there are closed infinite dimensional subspaces

MEhiQ) and NElpiQ) such that T restricted to M is an isomorphism

between M and N. Choose a countable linearly independent subset

{xn} of M. Then T is an isomorphism between s£{#„}, the set

spanned by {xn}, and sp{ Txn}. Let C be {qEQ: xn(g)^0, some »}.

The set C is countable therefore A= [xEhiQ): xiq) =0, q(¡.C} is

isometrically isomorphic with l2. Let D= {qEQ: iTx)iq)^0, some

xER\. The set is countable so the set 5= {yElpiQ): yiq) = 0, qQD]

is isometric to lPiQ). Since A(F)C5, the restriction of T to A, Tr,

can be regarded as a continuous operator from l2 to lv. When restricted

to [sp ]~ {xn}, Tr is an isometry between [sp ]~ {xn} and [sp ]~ { Txn},

and they are closed infinite dimensional subspaces of A and 5 respec-

tively, thus Tr is not strictly singular. But this contradicts the first

part of the above theorem.

(2) Jensen's inequality shows, just as in the case of T: l2—>lp in the

above theorem, that the inclusion map / is continuous. To see that

the range of I is not separable, note that the elements of lPiQ) which

are characteristic functions of single points are in the range of I.

They are mutually separated by distance 21/p and are uncountable.

Remark. Arguments similar to that used in (1) show that both

parts of the (a) part of the above theorem remain valid when l2 and

lp are replaced by hiQi) and lPiQ2) respectively. From the fact that

h and c0 contain no infinite dimensional reflexive subspaces, it follows

from similar arguments that hiQ) and CoiQ) do not contain any infi-

nite dimensional reflexive subspaces.
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