
ORDER PROPERTIES OF BOUNDED OBSERVABLES

NEAL ZIERLER

Continuing the development [4] of an aspect of the approach to

the axiomatization of quantum mechanics of G. W. Mackey [3], we

consider here the real linear space X of signed measures on the set P

of events generated by the states, and the set F0 of linear functionals

on X which are induced in a natural way by the bounded observables.

A necessary and sufficient condition for two events to be simultane-

ously measurable is found in terms of the order structure of F0, with

the following consequence: if F0 is a lattice, P is deterministic. At the

opposite extreme, F0 is said to be an "anti-lattice"1 if the greatest

lower bound exists only for comparable pairs of its elements and we

show in this case that the center of P is trivial.

Our results extend those of R. V. Kadison [l], in which F0 and P

are the self-adjoint operators and projections respectively in a uni-

formly closed self-adjoint operator algebra. While the framework and

plan of the proofs were inspired by Kadison's work, almost none of

the apparatus used by him is available here with the result that, in

detail, our techniques are quite different from his.

Let P be a weakly modular partially ordered set (see [4]). A func-

tion x from P to the non-negative real numbers and + oo is said

to be a measure if x(0) =0 and x is countably additive in the sense

that whenever {a,} is a pairwise orthogonal sequence of elements of

P, then x(Ua¿) = 2Zxiad- If x is a measure and {bt} EP is an increas-

ing (decreasing) sequence with supremum (infimum) b, then x(&¿)

—*x(6). A countably additive function x from P to the extended real

numbers is a signed measure if x(0) =0 and x takes on at most one of

the values + =o and — oo ; x is finite if x(l) is finite. Define the functions

5 and i on the signed measures on P by six) = sup(x(a) : aEP\,

fx) =inf {x(a): aEP} and set ||x|| =s(x)—¿(x). Clearly ||x|| < oo if

and only if x is finite. It iseasy toseethat||x|| = sup {x(a)— xia'):aE P} ■

Lemma 1. Let X be a real linear space of finite signed measures on P.

Then the function || || defined above is a norm for X and, under this

norm and its natural partial ordering, X is a partially ordered normed

linear space. That is,2
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»Kadison [l].

«See [2].
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(1) x 2: y and y 2: x imply x = y.

(2) x^y and y^z imply x2:z.

(3) x 2: y awd X 2:0 imply Xx S: \y.

(4) x St y implies x +z ^y+z for all z.

(5) x„2:0, ||xn — x||—>0 imply x2:0.

/» addition

(6) x2:0 a»¿ y 2:0 imply ||x+y|| =||x|| +||y||-

Proof. Since ¿(x) ^s(x), ||x|| 2:0; clearly, ||x|| =0 if and only if x = 0.

If X2:0, ||Xx|| =X||x|| is obvious while ||x|| =|| — x|| follows from the

fact that s(— x) = — fx). Finally, s(x+y) ^six)+siy) and iix+y)

2ti(x)+i(y) so ||x+y|| ^||x|| +||y||, and ||  || is a norm for X.

Properties (l)-(4) are obvious. If x(a) <0 for some aEP, ||x„—x||

2rs(x„ — x) 2: —x(a) since x„2:0. This contradiction of the hypothesis

x„ — x||—»0 proves (5), while (6) follows at once from the fact that

z||=z(l) for z2:0.

A function A from the set 05 of Borel subsets of the real line A to

P is said to be an observable if it has the following properties :

(7) A¿ = 0,AR = l.

(8) If Ei, E2, ■ • • are pairwise disjoint Borel sets, then AEl,

AEi, • ■ •   are pairwise orthogonal members of P and AUEi = VAEi.

The spectrum of an observable A is defined as follows. Let N

= {open EC A: AE = 0} and choose {E,} C A with UE¿ = Ub6.v E and

EiCE2C ■ • • . Then AUEi= VAEi = Q so UE; is the largest member

of N and we set spectrum A = complement UE¿. Define the norm of

A, \\A\\, as sup{ |X| : XGspectrum A) and say A is bounded if

m|| < oo. Let 0, respectively 0b, denote the set of all, respectively

all bounded, observables.

Every signed measure x on P determines a function mx from O to

the signed measures on (S>:mxiA)iE)=xiAE). If x is a state then

mxiA) is clearly a probability measure on (B for every observable A.

It is easy to see that ||x|| = sup{||mxC4)|| : A EO}.

Let A be a real linear space of finite signed measures on P. Each

observable A, respectively element a of P, defines a linear functional

La, respectively La, on X by LAix)=fl„\dmxiA)(K), respectively

A0(x)=x(a). Evidently, if A is the observable with -4(ij=a and

A (o) = a', then LA = La.

Lemma 2. Let x be a finite signed measure on P. Then ||x||

= sup{ |LAix)I : m|| = 1}.

Proof. Let X = sup {| LAix) | : ||.4

holds for all observables A so X g
1}. Clearly |LA(x)\ £\\x\\ \\A\\

I. On the other hand, we may
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choose a„GP so that x(a„) — ̂ (a,,')—>|[x|| and let A(n) denote the ob-

servable with ^4(w)u)=an, A(n){-x\ = añ. Then ||.¡4(»)|| = 1, LAwix)

—>\\x\\ and the result follows.

Corollary. If A is a bounded observable, La is a bounded linear

functional on X and ||Z-a|| =|M||-

Now suppose P is the set of events of a system S, P of states and

events,3 and henceforward let X denote the real linear space of signed

measures on P obtained as the set of all finite real linear combinations

of members of S.

Lemma 3. For AEOb, ||La|| —A.

Proof. Since spectrum A is a closed subset of R, we may choose

Xe spectrum A with |X| =||^4||. Then if e>0, it follows from the

definition of spectrum A that the event a = 4(x_e,x+«) 5*0 and hence

there exists fES with f(a) = 1. Then X — e g | Laif) | =X + e and, since

||/||=l,||L^|[=sup{|L^W|:xGX M| = l} ^\LA(f)\ *\\A\\ - e.
Thus, \\LA\\ i^H-^l!, and the opposite inequality is supplied by the

preceding corollary.

Let F0= {La~. A EOb}, let F¿¡~ denote the set of non-negative mem-

bers of Fo and let F denote the subspace of X* generated by F0. Note

that the mapping a-^>La is an isomorphism of the partially ordered

set P in the partially ordered set F0.

Lemma 4. Let T be a subset of F0 containing 0, La, Lb and Lab for

some a, bEP- Then if La and Lb have a greatest lower bound LA in T,

La = Lab.

Proof. 0^L„, Lb implies 0^LA and ||.4|| =sup{LA(f) :fES}
^sup{i0(/):/GS} ¡gl. Now/(a)=0 implies m¡iA) is concentrated

in 0, i.e., /(.¡4[o)) = l. It follows that A'm^a; similarly A\oi^b so

A'wúab. Then if gES, LA(g)=fl\dma(A)(^)úgiA(0,1])=giA\0))
= g(ab) =Lab(g) so LAúLab- Making use now of the assumption that

A is the greatest lower bound of La and Lb we obtain the result and

Corollary. Lab = La/\Lb in F¿\

Theorem 1. The events a and b are simultaneously measurable if and

only if there exists a linear subspace W of Y containing La, Lb, Lavt and

Lab such that La/\Lb exists in WC\ F0.

Proof.   Suppose  La/\Lb = LAEW as  in   the  statement.   Then

8 See [4]; actually, the following weaker set of postulates suffices here: El, E2,

E3, E5, S2 and the following: if/(a) = 1 whenever f(b) = 1, then 6ga.
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L¿ = Lab by Lemma 4. Let y = L„ —A0& = A„(a&)', z = A¡> —Aa& = L^w- If
wEW with w^y, z then w+Aa6^La, A¡, so w+LabúLab and w^O. It

followsthaty As = Oin W. Let u = A0v¡> — z = A(0v&)(&'v<>¡>) ; then y = Aa(a¡,r

^AoV!> = M+2 so y — w^z. Since 0¿u, y — u ^y and hence y — » íky/\z

= 0, i.e., y g». Thus, a(a&)'á(aV&)(o'Va&) ^b'\Jab. Joining &'VaZ>

to both ends of the inequality gives aiab)'\/ab\/b'= a\/b'^b"\/ab.

Since the opposite inequality is trivial, we have, taking orthocomple-

ments, ba' = biab)'. Hence b = biab)'\/ba = ba'\/ba and the result fol-

lows from [4, Lemma 1.4].

Conversely, if a and b are simultaneously measurable, the sub-

space IF of F generated by the mutually exclusive events ab, ab', a'b

and a'b' is clearly a lattice contained in F0.

Corollary. If Y0 is a lattice, then P is deterministic.

Proof. Suppose F0 is a lattice, let a and b be events and let IF be

the subspace of F generated by La, Lb, A„v& and Aa&. Then Lab

= L„ALb in Fo by Lemma 4 and the hypothesis so, a fortiori, Lab

= LaALb in WC\ F0. Hence a and b are simultaneously measurable by

the theorem and P is deterministic.

If A EO and a is a Borel function from A to A, the observable C

such that CE = A~(E) for all Borel sets E is clearly unique and is

denoted aiA). Observables A and B are simultaneously measurable or

commute if there exist an observable C and Borel functions a and ß

from A to A such that A = a(C) and B=ßiC).

Lemma 5. Let A and B be commuting bounded observables. Then

LaÚLb if and only if whenever a, ß and C are two Borel functions and

a bounded observable respectively such that A=aiC) and B = j3(C),

a(X) ;£/?(X) holds for almost all X relative to m¡iC) for all f ES.

Proof. Suppose there exists fES and a Borel set E of positive

m/iC) measure such that /3(A) <a(X) on E. Since m/iC)iE) =fiCE) >0,

Cis^O so giCE) = 1 for some gES. But then LBig)=fEß(K)dmgiC)(K)

<fEaCk)dm,,iC)i\)=LAÍg), which proves the nontrivial half of the

lemma.

Corollary. Let A and B be commuting bounded observables and

suppose that LAûLE. Then JE\dmfiA)ÇK) ̂/BXdw/(A)(X) for all fES
and Borel sets E.

Proof. Suppose, on the contrary, that there exist /, E such that

f¿KdmfiA)U\)>fE\dmfiB) (X). But then if a, ß and C are as in Lemma

5, /J5a(X)am/(C)(X)>/J5/3(X)a»v(C)(X) and so a(X)>|3(X) must hold

on some Borel subset of E of positive m¡iC) measure.
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Lemma 6. Let A and B be commuting bounded observables and let

W= {Lc: CEOb, C commutes with A and B}. Then LA and LB have a

supremum and an infimum in W.

Proof. Let a and ß be Borel functions and CEOb such that

A=a(C), B=ß(C) and let B> = (sup{a, ß})(C). Obviously, DEW,

and Ld^La, Lb by Lemma 5. Now let Dx be any member of Wsuch

that LDl ^ LA, Lb, let Ea = {X: a(X) ^ ß(k)} and let Eß

= {X: a(\) <)3(X)}. Then, by Lemma 5, Corollary,

f  \dmf(Dx)(\) è  f    \dmf(A)(\) and
a a

f  \dmf(Dx)(>) ^  f   \dmf(B)(\)        for all/ G S.

Hence

£j>i(/) =  f Xdmf(Dx)(X) ^  f  X¿í»/(^)(X) + f \dmf(B)(\)
J J Ea J Eß

=   f   a(\)dm/(C)(\) + f  ß(\)dmf(C)(X)
J Ea J Eß

=  f sup{a,^}(X)cfm/(C)(X) = LD(X)

and so Ld = La\/Lb in PF. Similarly, Liini[a^})(C) = LAALB in W.

Lemma 7. Suppose a belongs to the center Q of P and define the ob-

servable A by A[x] —a, A [a] =a'. Then A belongs to the center of Ob-

Proof. Let BEOb and define a function C from the Borel subsets

of the real line to P as follows: CE = aBE\/a'BB-s\\B\\- Clearly C0 = O

and Cr= 1. If E and Pare disjoint Borel sets, aBEl.aBF since BEA.BF

while aBE±a'BF-i\\B]] since a±a'; similarly, a'BE-s\\B\\ is orthogonal

to aBF and aBF-z\\B\\ so CEA.CF. If Ex, E2, • • • are pairwise disjoint,

then

VCEi = V(aBE¡ V a'BBt-*\\B\\) = VaB*,. V Va'BEi_3||i3||

= ciVBe,. V a'VBE¡_3MS|| = aBuEi V «'Bu^-siibid

=  ClBUir', V d'Bu#4_3||B|| = Cuj?;

since aEG and BGO& and it follows that CEOb. Let a be the char-

acteristic function of the set — ||b|| ^X^||b[| and let ß be a Borel

function on the line such that ß(X) =X for -\\B\\ =Xg||B|[ and ß(\)
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= X-3||A|| for 2||A||gXg4||A||. Then if EE[-\\b\\, ||a||], ißiQ)B
= Cß-1E = aBß-'-E\/a'Bß-'-E-zUB\\ = aBE\J a'BE = BE,i.e.,ßiC) = B. Evi-

dently, aiC) =A and so A and A commute ; since B E0b was arbitrary,

A Ecenter 0„ as was to be proved.

Lemma 8. Suppose A and B are commuting observables and 7 and 8

are Borel functions on the line. Then yiA) and ô(A) commute.

Proof. If A=aiQ and A=/3(C) then 7C4) =7 oa(C) and 5(A)
= 5oj3(C).

A partially ordered set is said to be an anti-lattice if suprema and

infima exist only for comparable pairs of its elements. The Corollary

of Theorem 1 asserts that if F0 is a lattice, Q = P. The following

theorem provides the corresponding conclusion for the opposite ex-

treme.

Theorem 2. If F0 is an anti-lattice, then 6= {O, 1}.

Proof. Suppose, on the contrary, that there exists aGG with

0<a<l and let A and I be the observables defined as follows:

^4(U =a, Aw=a', 7flj = l. Then A and I belong to the center of Ob

by Lemma 7 and 2^4 Gcenter 0b also by Lemma 8. Hence L2A and Li

have a supremum and an infimum in F0 by Lemma 6 and it follows

from the hypothesis that L2A and Ar are comparable. But by 52

we can find f, g in S such that /(a) = 1 and g(a)=0. Then L2Aif)

= 2>l=Aj(/) while L2Aig) =0<1 =A/(g) and this contradiction

shows that 0<a<l is incompatible with A EG.
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