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1. The Poisson transform. By the set F we shall mean the family

of functions / which are integrable on each finite interval of the real

axis and for which the integrals

/" /(*) f—— dx    and      I — ax

converge. For each member / of this set and each positive number a

the Poisson transform Paf is defined by the point function

(2)        (Paf)(x) = - f
it J .

a/tt)

- (* - £)2 + a2

d£, — oo  < x < co ,

which under condition (1) converges uniformly in each interval

0<ax^a^a2, so that for fixed x, (Paf)(x) is continuous in a>0.

The semi-group property, easy to prove in case the integrals (1)

converge absolutely, states that

(3) PbPaf = Pa+bf,       a > 0, b > 0.

The main purpose of this paper is to establish the validity of this

property for each / in F, thus removing the requirement of absolute

convergence.

As an application it will be established in the last section of the

paper that Snow's inversion formula for the integral transform

1   fM /({)
(4) g(x) = — -—-cií

* J_M (*-£)2+l

holds on the sole assumption that the integrals (1) converge. His own

conditions are more restrictive (for a discussion and reference see

[1, P. 94]).

2. Proof of the semi-group property. Let us denote by k(x, a) the

function
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1 a
kix, a) = —

x   x2 + a2

The formula (2) states that

kix - Ü, b)dt       kit - y, a)fy)dy =        kix-y,a + b)fy)dy,
-00 J -00 J -CO

a>0, ô>0.

In view of the familiar fact that kix, a) * kix, b) = kix, a+b), the

proof amounts to showing that

1   rB bdi, r*       afy)dy
lim

1   ç*        bd£ r

W_s(x-£)2 + ¿»2J_fi,s-» t2 J_s (x - Ö2 + ¿»2 J_M (£ - y)2 + a2

If00 r aWfIf00 /*'-J_ /(^^J_
[(* - £)2 + **][(£ - y)2 + a2]

The inside integral on the left-hand side converges uniformly on

finite intervals — Si££¿A. This permits the interchange of the iter-

ated integrals on the left-hand side, so we must show that the

difference between

/CO /»  .f(y)dyj ¿{

and the right-hand side approaches zero as A—* oo , 5—> oo. By

we mean

ab

[i* - t)2 + b2][m - yy + a2]

This difference can be written

/oo /»oo y* oo /» —5

/(y)áy       • • • ¿{ + I   /(y)¿y       • • • #,
-CO "'S «^ -CO «^     -CO

where the convergence of each of the double integrals follows from

subsequent considerations.

We shall show that as A—»oo the first of these iterated integrals

vanishes; the proof that the second does as 5—>oo is similar.

Let A(x, y) denote the expression defined by

A = (x - yY + 2ib2 + a2)(x - y)2 + (62 - a2)2

= [(x - yy +ib + a)2][(x - y)2 + (6 - a)2].

Then by standard methods of integration



(6)
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/CO /»COf(y)dy        ■•■dû

("°        /it R - x\ a .
= J    f(y) (j - arc tan ——\ — [(x - y)2 - b2 + a2]dy

+ I    /(3OI-arc tan--)— '{(x - y)2 + b2 - a2]dy
J -00        \ 2 a    / A

{"» ab (R-x)2 + b2
— I   /(y) — (y — x) l°g-¿y-

jJKy>   A V/ 6(i?-y)2 + a2   •"

The independent convergence of each of these three integrals on the

right follows from the convergence of the integrals (1).

As R—><x> the first of these three approaches zero since the factor

Tt/2— arc tan ((R — x)/b) can be moved outside the integral.

The second integral can be written

/<° / T               R - y\[-arc tan-I dG(y),

where

G(y) = -  f — [(x - v)2 + b2 - a2]f(v)dv,       A - A(x,,).
J y A

On integrating by parts we find that the integrated parts vanish,

leaving

/00

G(y)
(R - y)2 + a2

Consequently,

dy.

/a G(R - u)-du.
_„                  re2 + a2

This vanishes as R—» 00 because G( co ) = 0 and G is a bounded func-

tion.

The third integral on the right-hand side of (6) can be written as

f00 y-x (R-x)2 + b2
/s -Í- log^-1- dF(y)

J_M (x - y)2 + (b - a)2    *(R-y)2 + a2

where

Cy abf(v)dr,
F(y) = - J

ix - v)2 + (a + b)2
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(A - x)2 + b2

by (ix-y)2 + ib - a)2~ °iR-y)2 + a2)
dy

ix - y)2 +ib- a)2 (A - y)2 + a2

ib - a)2

dy

This follows from (5). Integration by parts yields

C° d   ( y — x

J=\   Hy)VYt-^TTj,--1J-x dy dx-y)2 +ib - a

/<*> y — x R — yFiy)
-CO

rM ib
+       F(y) —

J_M [(x - y)2 +(b- a)2]2      (R - y)2 + a2

The function F(y) is bounded. Consequently the first integral on

the right-hand side of (7) is bounded by a constant independent of

A times

(y - x)2 (A - x)2 + b2
log —-—;—; dy.

(8) /l 1
-.o 1+ \y\ l+ I A

dy.

This can be computed to show that it vanishes as A—» oo.

As for the last integral, it is dominated by a constant independent

of A times

/.
log

(A - x)2 + b2

iR-y)2+a2'-co l + ix-y)

Let y — x = t], R — x=T. It remains only to show

T2 + b2

dy.

/I
-

-co    I   + V2

The integral here is

(9)

<(" -J-
j-00       l+V

/I -00      1    +V

iT - v)2 + a2

T2 + a2

dn = 0.

iT-r,)2+a

T2 + b2

dt]

log
T2 + a2

di)

of which the latter clearly vanishes as T—-> oo

The first integral of (9) can be written

T2+ a2

/
l°g

iT - r,)2 + a2
dGiv),

where G(rj) = arc tan rj — (ir/2) sgn 77. Integration by parts shows that

this integral is numerically less than

/» 00

:      I Giv)
J -00 (T _ vy + a:

dr¡.
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Since | Gin) | ^.4/(1 +1 r¡\ ) this integral is less than a constant (inde-

pendent of 7"), times

1 1

/. i+ u  i+   r-i
dr¡.

This vanishes as T—>co for the reason given for (8).

The proof of (3) is now complete.

3. Snow's inversion formula for the transform (4). On the assump-

tion that the integrals (1) converge, the integral (4) converges for

— oo <x< oo and admits analytic continuation into the region \lz\

<1, where z = x-\-iy [2, p. 543]. Under severe restrictions Snow [l]

has shown that (4) is inverted by

fix) = lim [g(x + iy) + g(x - iy)] - (Pxg)(x).
V-+1

We show that this holds for almost all x under the sole assumption that

the integrals (1) converge. First by the continuity of (Pvf)(x) as a

function of y the formula can be written as

(10) /(*) = lim [g(x + iy) + g(x - iy) - (Pvg)(x)].
v—>l

Next it follows from (4) that

g(x + iy) + g(x - iy)

(11) 1   p»r 1 1 n

7 J_M l(x + iy - Ç)2 + 1 + (x - iy - Ö2 + ij/(í)¿í-

Now g = Pi/so that by the semi-group property

Pyg = PyPif = Py+if-

Hence,

it J _,

(i + y)

x J_ (* - f)2 + (y + l)2
(i2) (/>,*)(*) = -    -—:„, , , ^.df.

Subtract (12) from (11). By the identity

1 1 1+y \-y

(co + iy)2 +1      (u - iy)2 +1      co2 + (y + l)2     w2 + (1 - y)2

(with co = x—f), we obtain

g(x + iy) + g(x - iy) - (Pyg)(x) = - f-I__/({)aÇ,
7T  ^_w   (X  -   ¿)2  +  T2
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where t«= l—y. Now as y—»1, t—>0, and it is known [2] that the last

integral approaches fix) almost everywhere as t—»0. This proves (10).
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ON HYPONORMAL OPERATORS

TSUYOSHI ANDÔ

A bounded linear operator A on a Hubert space $£> is said to be

hyponormal in case || T*x\\ ^|| Tx\\ for all x£¿p. This short note gives

a negative answer to the question raised in [l, p. 188]: "Does there

exist a completely continuous hyponormal operator which is not

normal?"

Theorem. If T is hyponormal, || Tn\\ =|| T\\n for all n.

Proof. It is sufficient to prove that \\T\\ =1 implies ||An|| =1 for

all ». Consider the following property:

(C„) For every e>0, there exists a unit vector x such that

||r»*||èl-€ and \\Tnx-T*Tn+lx\\^e.

(Co) just says that 1 is an approximate proper value for the self-

adjoint operator T*T (see [l, p. 170]). (C„) obviously implies

|| An|| = 1. Now suppose that (C„) is valid. For e>0 and x (indicated

in (C„))

||r"+ix- r*r»+2x||2

= ||rn+1xl|2 - 2||r«+2*||2 + H^r^xll2

^ ||r"x||2 - ||r"+2x||2 (because ||r|| = ||r*|| = 1)

^ ||rnx||2 - ||r*rn+1x||2 (because T is hyponormal)

á \\T"x - r*7/"+1x||{||7:"x|| + ||r*r"+1*||} g 2« by (C„).
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