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1. The functions k(x) and h(x) are said to form a pair of Fourier

kernels if the reciprocal equations

(1.1) g(x) =   f'ek(xy)fy)dy,
J o

(1.1') /(x)=   (   hixy)giy)dy,
J o

are simultaneously satisfied. The kernels are said to be symmetrical

if kix)=hix) and unsymmetrical if kix)^hix). In an earlier paper

[l, p. 953] I found a pair of unsymmetrical Fourier kernels expressed

in terms of Meijer's G-function as

(1.2) kix) = A(x) = 21x~ll2Gmp^q,m+n (x2->

hix) = Hix)

(1.2') -r-i/2  n,a        /     \-bi, ■ •
-    ZyX (j"j)_(_g[Tn^_7iI    X

\     I —di, • ■

where 7>0, n—p = m — q>0 and

p q m n

Z ay + Z bj = Z Cj• + Z ¿V
/-i j-i y=i y=i

The importance of these functions is due to their very general yet

simple form from which many known as well as new kernels can be

deduced as special cases [l, p. 954, §3]. I also established in another

paper [2, p. 21 ] the reciprocities (1.1), (1.1') with the functions

Kix) and Hix) by using the ordinary convergence methods. The aim

of the present paper is to establish the reciprocities (1.1), (1.1') by

employing the convergence in the mean square method. As is well

known in the theory of Fourier integrals, the mean convergence

theory is both easier and more general than the other. The result is

given in the form of a theorem, the proof of which is based upon an

extended form of a Watson's theorem [3, p. 221, Theorem 129 ex-

tended in the sense of §8.9 on p. 226] which may be stated as in the

next section.
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2. Let k(s) and r¡(s) be the Mellin transforms of k(x) and h(x)

respectively, then the formal necessary condition [3, p. 214, Equa-

tion (8.3.5)] that k(x) and h(x) be unsymmetrical Fourier kernels is

that

(2.1) k(s)v(1 - s) = 1.

However, we need only assume the existence of the functions k(s) and

r¡(s) on the line <r = J where s = a+it so that (2.1) becomes

(2.2) *G + üMi - it) - 1.

We also assume that k(J+í¿) and t](\-\-it) are both bounded as

|í|-»eo.

Let now kx(x) and hx(x) be so defined that kx(x)/x and hx(x)/x are

the Mellin transforms of K(%+it)/(%— it) and yih+it)/i?— it) respec-

tively, i.e.

kxix)       1 CT  *ih+it)
(2.3) —- = — l.i.m. —- x-uiv-i'dt,

X 2lt   T-*"   J -T       2   —  it

hxix)      1 cT -nih + it)
(2.3') — « — l.i.m. —- x-wv-odt,

x        2it r->» J_T    i — ¿/2

the integrals being convergent in the mean square sense since on ac-

count of the boundedness of k(\-\-íí) and r¡(%-\-it), n(h-\-it)/(\ — it) and

*l(h +**)/(§ — *0 belong to L2(- co, »). Also it follows that kx(x)/x

and hiix)/x belong to L2(0, co).

The analogue of Theorem 129 of Titchmarsh [3, p. 221] appropri-

ate for the unsymmetrical case [3, p. 226, §8.9] is as follows.

Theorem A. Let «(§+*'{) and r¡(?-\-it) be bounded functions of t

satisfying (2.2). Let ki(x) and hx(x) be defined by (2.3) and (2.3') and

f(x) be any function belonging to L2(0, «). Then the formulae

d   CK du
(2.4) £*(*)=—       kxixu)fiu)—,

dx J o u

d   rx du
(2.4') **(*)=- I    *i(*0/(«)-

cte./ n «

define almost everywhere functions gk(x) and gh(x) respectively both be-

longing to L2(0,oo). Also the reciprocal formulae

d   rm du
(2.5) /(*)=T       *i(«0&(«)-

da;«/ o «
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d   r °° du
(2.5') /(*)=- I    Hxu)ghiu) -,

dxJ 0 «

hold almost everywhere. And further,

/I 00 /» 00[fx)Ydx =        gkix)ghix)dx.
0 J 0

The proof of this (as is indicated in [3, §8.9] also) is almost similar

to that of Theorem 129 of Titchmarsh, cited above.

3. Using the definition [4, p. 207] of G-function, we may write

after an obvious transformation of the variable of integration

(3.1) Kix) = —: I   X.is)x-lds,
2iri J L

(3.1') Hix) = —: I   3C(i)x-'tfr,
2iriJ r.

where

(3.2)    K(j) =

(3.2')  3C(i) =

MT-í¡+¿-¿)£r(-í+i'-i+£>

"       (l 1 s\ JL     /l 1 i\

and the contour A is the line from cr — * 00 to a+i °o. It is assumed that

7>0 and all poles of the integrands in (3.1) and (3.1') are simple and

such that the Cy-poles of (3.2) and dy-poles of (3.2') lie to the left of

L while ay-poles of (3.2) and £>y-poles of (3.2') lie to the right of L.

Evidently 3C(s) and 3C(s) are the Mellin transforms of Kix) and

Hix) respectively.

For large s, the asymptotic expansion [4, p. 47] of the Gamma func-

tion is given by

(3.3)     log rif> + a) - is + a - \) logs - s + i log(2,r) + 0 (—),

where |args| < it. To obtain the behaviour of KC(j) and 3C(s) for
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large |/|, we replace Gamma functions involving —s/2y by those

containing +5/27 with the help of the relation

r(z)r(i - z) = it cscxz.

Then using (3.3) and the conditions (i) and (ii) of the Theorem 1 be-

low we get along the line L,

(3.4)

and

(3.4')

X(s)x~' =  I 11"**-1"» exp{î7(tt log / - log x + B)}

X(s)x~° =  I t |mCt-i/» exp{í¿Gu log t - log x + B')}

W° (ttt)}
for large |i|, where a=(n—p)/y, B and 5' are constants and D

and D' are also constants each having one value for large positive t

and another value for large negative t.

From (3.4) and (3.4') it follows that the integrals (3.1) and (3.1')

are uniformly convergent for all x when <r<J. Thus if a<\, the

integration with respect to x under the integral sign in (3.1) and (3.1')

is justified. Let us denote

(3.5) Kx(x) =  I    K(x)dx
J 0

(3.5') Hx(x) =  f  H(x)dx.

Then

1    r    3CC0
(3.6) Kxix) =—;      -xi-'ds,

2iri J L \ — s

(3.6') Hxix) =—;       —±±xi-'ds,
2lti J L   1  — s

whenever a<\.

We, however, require the above relations to hold when a = \ be-

cause we have to consider X(s) and 3C(s) along the line cr = |. It is

easy to show that the integrals on the right of (3.6) and (3.6') con-

verge to Kx(x) and Hx(x) respectively when a = \.
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On multiplying (3.4) by l/t, we see that the integral in (3.6) con-

verges when cr = | and, since u>Q, that we may close the contour by

a large semicircle on the left. With the conditions (iii) and (v) of the

theorem below, the only singularities of the integrand within this

closed contour are the simple poles of

Computation of the integral in (3.6) by residues gives us easily the

individual powers of A(x) each integrated from 0 to x. Since A(x) is

an entire function such term by term integration is justified and the

final result is Ai(x) as defined in (3.5). Hence with the conditions of

Theorem 1, (3.5) and (3.6) are true and similarly (3.5') and (3.6')

are true when cr= 5.

On the line o = \, it is clear from (3.4) that Xis)x~3 is bounded for

all values of t. Hence on <r = §, 3C(s)x~8/(l— s) belongs to

L2i\-i*>,\ + i*)

and so the integral in (3.6) converges in mean square. But as shown

above the integral in (3.6) also converges in the ordinary sense

to Ai(x) of (3.5). Hence if the integral is evaluated by mean square

methods its value will be Ai(x) of (3.5) except, perhaps, in a set of

measure zero. Similarly 3C(s)x~s/(l —5) belongs to L2i\— i<x>, %-\-iœ)

and the integral in (3.6') converges in mean square to i?i(x) of (3.5').

4. Theorem 1. If
(i) 7>0, n—p = m — q>0,

00   Zli a,+ 2Zli bj= Zr-i Cj+ Z;=i dj,
(iii) Rl(è-ay)>0,i=l, • • • ,p,

(iv) Rl(i+6j)>0,i=l, • • • ,q,
(v)  Rl(i+cy)>0,j=l, ■ ■ ■ ,m,

(vi) Rl(|-dy)>0,j = l, •••,«,
(vii) f(x) belongs to L2(0, 00),

then the formulae

d   C °° du
(4.1) -       Kiixu)fu)- = gKÍx),

dxJ 0 u

d   C °° du
(4.1') -       Hiixu)fu) - = mix),

dxJ 0 u
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define almost everywhere functions gic(x) and gii(x) respectively both

belonging to L2(0, <x>). Also the reciprocal formulae

(4.2)

(4.2')

d   C °° du
— j    Hx(xu)gK(u) — = f(x),
axJn u

d   Cx du
— I     Ki(xu)gn(u) — = /(*.
axJ o u

hold almost everywhere. And further

(4.3) f   [/(*)]*<te=   f   g*(s)gx(*)¿*.
•' o •/ 0

In (3.6) and (3.6') which define R~x(x) and ifi(x) in a sense similar

to that in (2.3) and (2.3'), we take <r = § so that the contour L is the

line from § — jco to \-\-i^>. The inequalities (iii), (iv), (v), and (vi)

then ensure that the poles of X(s) and 3C(s) lie on such sides of L as is

required for the definition of K(x) and H(x). We will now establish

the truth of the requirements of Theorem A of §2.

The first requirement is that 3C(§+¿í) and 3C(§+¿/) are bounded

and that (2.2) is satisfied. This is clearly true from (3.2),  (3.2'),

(3.4) and (3.4'). The second requirement is that Kx(x) and Hx(x) are

related with X(s) and 3C(s), the Mellin transforms of K(x) and H(x)

respectively, according to (2.3) and (2.3'). This is explained at the

end of §3 above. The third requirement is that f(x) belongs to

L2(0, co ) which is covered by the hypothesis (vii) of the theorem.

Since all the conditions of the Theorem A are satisfied, its conclu-

sions follow and in our case these conclusions are (4.1), (4.1'), (4.2),

(4.2') and (4.3).

5. Taking p — q, m = n and

a¡ + b¡ = 0,       j = 1,

Cj+dj =0,       j = 1,

we notice that

P,
m.

fe i\   rrr \      uf \     o    t-1'2  >"'p   / *r au • • • , ap, -ax, - - - , -ap\
(5.1) K(x) = H(x) = 2yx       G2p,2m.[x \,

\ Cx, ,  Cm, Cx, , Cm/

which is a symmetrical Fourier kernel obtained formally by me in an

earlier paper [5, p. 298]. Corresponding to this symmetrical kernel

K(x) of (5.1), the Theorem 1 takes the form
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Theorem 2. If

(i) 7>0, m-p>0,

(ii) Rl(i-ay)>0,j = l, • • • ,p,
(iii) Rl(j+cy)>0,j=l, • • • ,m,

(iv) f(x) belongs to L2(0, 00),

then the formula

d   r™ du
— I    Ki(xu)fu) — = gix)
IX J 0 udx

defines almost everywhere the function gix) belonging to L2iO, 00). Also

the reciprocal formula

d   ("° du
—       Kiixu)giu) — = fx)
dxJ 0 u

d   rx ... du

dx.

holds almost everywhere and further

(X[fx)Ydx=  (°°[gix)Ydx.

This theorem is due to Fox [6, p. 399] and it is this theorem which

inspired me to write this paper.
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