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1. Introduction. Let Uit) be an nXn matrix whose elements are

continuous functions of a parameter t. We shall find necessary and

sufficient conditions for the relation

(1.1) Uit) ( Uis)ds = ((  Uis)ds\uit)

to hold in an interval 0^/^io, where to is so small that throughout

the interval [0, to] the Jordan canonical form of Uit) has the same

form. That is, its off-diagonal elements do not change in the interval.

Matrices Uit) satisfying (1.1) are of interest for various reasons; see,

for instance, [l, p. 278]. We may mention two occasions where (1.1)

occurs. Firstly, consider a system of n homogeneous linear differential

equations of the first order for n unknown functions with Uit) as

the matrix of coefficients. If we consider the unknown functions as

components of a vector, and if we form a matrix Y, the n columns of

which are n linearly independent solutions of our system, then we

have for Y=Y(t):

(1.2) F = UY,        7(0) = /,

where a dot denotes the derivative with respect to t and where / de-

notes a nonsingular matrix which we may choose to be the unit

matrix. If (1.1) holds, then (1.2) can be solved in terms of quadra-

tures. In fact, we have

(1.3) F = exp   f  U(s)ds.
J 0

Secondly, consider the following problem in the theory of systems

with periodic coefficients. Let W(t) be an nXn matrix depending con-

tinuously on t such that, for a constant co,

(1.4) W(t + co) = W(t),

and also

(1.5) W(-l) = - Wit).

Then it has been shown in special cases by Demidovic [2] and, more
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generally, by the author [3 ] that a matrix Zo(t) satisfying

(1.6) ¿o=WZo,       Zo(0) = I,

is periodic with period co, i.e., Z0(/+co) =Z0(t). The matrices W(t)

form a linear space under addition.

We ask whether we can extend this linear space such that a system

of the type (1.6) still will have periodic solutions. A partial answer

to this question is given by the following remark: Let W be a fixed

matrix satisfying (1.4) and (1.5). Let E(t) be such that

(1.7) E(t + co) = E(t),       E(-t) = E(t).

Then the system

Z = (W + eE)Z,        Z(0) = I

will have solutions with the property

Z(t + co) = Z(t),

for all values of e if the matrix A (t) defined by

A(t) = Zö\t)E(t)Zü(t)

commutes with its integral. The proof is based on the standard pro-

cedure of expanding Z(t) in a power series in e.

2. Matrices commuting with their derivatives. Instead of U(t) we

introduce

V(t) =  f  U(s)ds,

and assume that

(2.1) VV-VV = 0.

Consider an interval (tx, t2) such that, for txútúk, there exists a

differentiable nonsingular matrix P(t) such that

(2.2) V(t) = P-\t)J(t)P(t),

where J(t) is in Jordan canonical form. This means that

[Cx   0   • • • 0 I

[o .-cj

where the submatrices C„(t), p= 1, • • • , r, are npXn„ matrices of the

form
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(2.4) Cp = ap(l)Ip + ÖPEP.

Here aP(t) is a differentiable function of t, I„ is the npXnp unit matrix,

Sp is 0 or 1, and E„ is the npXn„ matrix with elements

«».o        v, u = 1, • • • , n„,

and

(2.5) Cv.v+i = 1,       eVil¡ = 0 for u — v ¥■ 1.

We shall assume that the interval (h, t2) is such that no difference

ap — a„ vanishes in a subinterval unless it vanishes identically.

We may assume that, if ap—Oc vanishes identically, for p^cr, either

§„5^0 or 5,^0. Otherwise, we could contract Cp and C„ into a single

diagonal matrix.

Now we have :

Theorem 1. The general nXn matrix V(t) satisfying (2.1) and hav-

ing a Jordan canonical form determined by (2.3), (2.4) with constant

np, hpfor h^t^t2 is obtained by finding all nXn matrices X satisfying

(2.6) J(XJ - JX) - (XJ - JX)J m 0,

determining the nonsingular solutions P(t) of the matrix differential

equation

P = XP,

and forming

V = P-UP.

The matrices X form a linear space (under addition) which depends only

on the np, hp, and the set of pairs of subscripts (p, a) for which ap — a,

vanishes identically.

Proof. We observe that, trivially,

(2.7) JJ = JJ.

By differentiating (2.2), we find

(2.8) V = P~lJP + P-UP + P-UP.

Because of P~1P = I we have

p-ip _|_ p-ip = 0;       p-i = _ p-ipp-\

and therefore from (2.2), (2.8), with X = PP-1:

vv-vv=p-i{ -XJ+J+JX\JP-P-U{ -XJ+J+JX}P=0.
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If we multiply this last equation by P on the left and P~l on the right

and then make use of (2.7) we get (2.6). We note that the solutions

X of (2.6) form a linear space. In the next section, we shall determine

a basis for the linear space of the matrices X and, incidentally, shall

also prove that this space does not depend on the functions a„(t)

but merely on the discrete parameters mentioned in Theorem 1.

Corollary. A system of linear differential equations which, in

matrix form, can be written as

(2.9) Y = UY

where the coefficient matrix U=V has the property UV= VU, can always

be transformed into a system

(2.10) Z = (X + J + JX - XJ)Z,

where X, J are defined as in Theorem 1. The transformation to be used

is, of course, Z = PY, where P is defined as in Theorem 1.

3. The space of matrices X. The solutions X of (2.6) may be writ-

ten as matrices which are composed of submatrices Xp ,„, p,a— 1, • • ■ ,r,

where X„,c is a matrix with n„ rows and n, columns and

(3.1) X=(XP,,)

with the natural arrangement of the submatrices. From (2.6) we find

the equations

2 2

\o . ¿) C-pJLpa ~r" lipoma       .¿C-pAp„C(r = u,

where Cp is given by equation (2.4).

If we let Xki denote the element in the &th row and Zth column of

Xp„ then (3.2) gives us the scalar equations

a„)Xk+i,i + 2ba(a, — ap)xk,i+i

2 2

+ SpXk+2.1 + 5aXk,i-2 — 28p8aXk+i,t-x = 0

& = 1, ¿, - - - , np,   taas x, ¿, • • • , n„,

and where we define xpq = 0 if p>np or q<l. Equations (3.3) have

to be analyzed for various cases. We may summarize the results as

follows :

Theorem 2. The matrix Xp, has one of the following structures:

Case 1. ap — ou does not vanish identically (and, therefore, not in any

subinterval of (tx, ¿2). Then Xp<! is identically zero.

(af — aa)2xk,i + 25„(ap

(3.3)

where
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Case 2. ap— a„ = 0, ôp = 0, 5,= 1. Then the lasttwo columns ofXPt„ are

arbitrary, but all other elements of XPt<r vanish identically.

Case 3. ap — av = 0, àp=l, 5ff = 0. Then the first two rows of Xp,a are

arbitrary but all other elements of XPt, vanish identically.

Case 4. ap — a« = 0, 8P = Ô„ = 0. Then we may assume p = a (see re-

marks before Theorem 1), and Xpp is arbitrary.

Case 5. ap — a„ = 0, 8p = 8a=l. Denoting the elements of X„,„ by Xi,k,

where 1=1, • ■ • , np and k=l, ■ • ■ , n„, and if np>n„, then the first

two rows of Xp¡<r are arbitrary and X„, has the appearance indicated

below:

X\\      Xi2      #13 xu xn, . . .

X2i     x22     x23 x24 x2s, • • •

0 2X21     ¿X22 —  #11     2#23 —  Xl2        2x2\ —  #13,     '   *   *

0 0 3X21 3*22 —  2Xn     3X23 —  2Xl2,  •   •   •

0        0        0 4x2i 4x22 — 3xn, • • •

0       0       0 0 5x2i,

// np<n„, the role of rows and columns has to be exchanged, and if

np = n„, the Xp,p is triangular, but the same shape as above, except that

x2l = 0.

Only Case 5 requires a more detailed analysis. However, once the

explicit form of X stated above is known, it can be verified with a

moderate amount of calculations which will be omitted here.
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