CONDITIONS FOR A MATRIX TO COMMUTE WITH ITS INTEGRAL

IRVING J. EPSTEIN

1. Introduction. Let U(t) be an $n \times n$ matrix whose elements are continuous functions of a parameter t. We shall find necessary and sufficient conditions for the relation

(1.1)
$$U(t) \int_0^t U(s) ds = \left(\int_0^t U(s) ds \right) U(t)$$

to hold in an interval $0 \le t \le t_0$, where t_0 is so small that throughout the interval $[0, t_0]$ the Jordan canonical form of U(t) has the same form. That is, its off-diagonal elements do not change in the interval.

Matrices U(t) satisfying (1.1) are of interest for various reasons; see, for instance, [1, p. 278]. We may mention two occasions where (1.1) occurs. Firstly, consider a system of n homogeneous linear differential equations of the first order for n unknown functions with U(t) as the matrix of coefficients. If we consider the unknown functions as components of a vector, and if we form a matrix Y, the n columns of which are n linearly independent solutions of our system, then we have for Y = Y(t):

$$\dot{Y} = UY, \qquad Y(0) = I,$$

where a dot denotes the derivative with respect to t and where I denotes a nonsingular matrix which we may choose to be the unit matrix. If (1.1) holds, then (1.2) can be solved in terms of quadratures. In fact, we have

$$(1.3) Y = \exp \int_0^t U(s)ds.$$

Secondly, consider the following problem in the theory of systems with periodic coefficients. Let W(t) be an $n \times n$ matrix depending continuously on t such that, for a constant ω ,

$$(1.4) W(t+\omega) = W(t),$$

and also

$$(1.5) W(-t) = - W(t).$$

Then it has been shown in special cases by Demidovic [2] and, more Received by the editors February 9, 1962.

generally, by the author [3] that a matrix $Z_0(t)$ satisfying

$$\dot{Z}_0 = WZ_0, \qquad Z_0(0) = I,$$

is periodic with period ω , i.e., $Z_0(t+\omega) = Z_0(t)$. The matrices W(t) form a linear space under addition.

We ask whether we can extend this linear space such that a system of the type (1.6) still will have periodic solutions. A partial answer to this question is given by the following remark: Let W be a fixed matrix satisfying (1.4) and (1.5). Let E(t) be such that

(1.7)
$$E(t + \omega) = E(t), \quad E(-t) = E(t).$$

Then the system

$$\dot{Z} = (W + \epsilon E)Z, \qquad Z(0) = I$$

will have solutions with the property

$$Z(t+\omega)=Z(t).$$

for all values of ϵ if the matrix A(t) defined by

$$A(t) = Z_0^{-1}(t)E(t)Z_0(t)$$

commutes with its integral. The proof is based on the standard procedure of expanding Z(t) in a power series in ϵ .

2. Matrices commuting with their derivatives. Instead of U(t) we introduce

$$V(t) = \int_0^t U(s)ds,$$

and assume that

$$\dot{V}V - V\dot{V} = 0.$$

Consider an interval (t_1, t_2) such that, for $t_1 \le t \le t_2$, there exists a differentiable nonsingular matrix P(t) such that

$$(2.2) V(t) = P^{-1}(t)J(t)P(t),$$

where J(t) is in Jordan canonical form. This means that

(2.3)
$$J = \begin{pmatrix} C_1 & 0 & \cdots & 0 \\ 0 & C_2 & & & \\ & & \ddots & & \\ 0 & \cdots & \cdots & C_r \end{pmatrix},$$

where the submatrices $C_{\rho}(t)$, $\rho = 1, \dots, r$, are $n_{\rho} \times n_{\rho}$ matrices of the form

$$(2.4) C_{\rho} = \alpha_{\rho}(t)I_{\rho} + \delta_{\rho}E_{\rho}.$$

Here $\alpha_{\rho}(t)$ is a differentiable function of t, I_{ρ} is the $n_{\rho} \times n_{\rho}$ unit matrix, δ_{ρ} is 0 or 1, and E_{ρ} is the $n_{\rho} \times n_{\rho}$ matrix with elements

$$e_{v,\mu}, \quad v, \mu = 1, \cdots, n_{\rho},$$

and

$$(2.5) e_{v,v+1} = 1, e_{v,u} = 0 \text{for } \mu - v \neq 1.$$

We shall assume that the interval (t_1, t_2) is such that no difference $\alpha_{\rho} - \alpha_{\sigma}$ vanishes in a subinterval unless it vanishes identically.

We may assume that, if $\alpha_{\rho} - \alpha_{\sigma}$ vanishes identically, for $\rho \neq \sigma$, either $\delta_{\rho} \neq 0$ or $\delta_{\sigma} \neq 0$. Otherwise, we could contract C_{ρ} and C_{σ} into a single diagonal matrix.

Now we have:

THEOREM 1. The general $n \times n$ matrix V(t) satisfying (2.1) and having a Jordan canonical form determined by (2.3), (2.4) with constant n_{ρ} , δ_{ρ} for $t_1 \leq t \leq t_2$ is obtained by finding all $n \times n$ matrices X satisfying

$$(2.6) J(XJ - JX) - (XJ - JX)J = 0,$$

determining the nonsingular solutions P(t) of the matrix differential equation

$$P = XP$$

and forming

$$V = P^{-1}JP$$

The matrices X form a linear space (under addition) which depends only on the n_{ρ} , δ_{ρ} , and the set of pairs of subscripts (ρ, σ) for which $\alpha_{\rho} - \alpha_{\sigma}$ vanishes identically.

Proof. We observe that, trivially,

$$(2.7) JJ = J\dot{J}.$$

By differentiating (2.2), we find

$$\dot{V} = P^{-1}JP + P^{-1}JP + P^{-1}JP.$$

Because of $P^{-1}P = I$ we have

$$\dot{P}^{-1}P + P^{-1}P = 0, \qquad \dot{P}^{-1} = -P^{-1}PP^{-1}.$$

and therefore from (2.2), (2.8), with $X = \dot{P}P^{-1}$:

$$\dot{V}V - V\dot{V} = P^{-1}\{-XJ + J + JX\}JP - P^{-1}J\{-XJ + J + JX\}P = 0.$$

If we multiply this last equation by P on the left and P^{-1} on the right and then make use of (2.7) we get (2.6). We note that the solutions X of (2.6) form a linear space. In the next section, we shall determine a basis for the linear space of the matrices X and, incidentally, shall also prove that this space does not depend on the functions $\alpha_{\rho}(t)$ but merely on the discrete parameters mentioned in Theorem 1.

COROLLARY. A system of linear differential equations which, in matrix form, can be written as

$$\dot{Y} = UY$$

where the coefficient matrix $U = \dot{V}$ has the property UV = VU, can always be transformed into a system

$$(2.10) \dot{Z} = (X + J + JX - XJ)Z,$$

where X, J are defined as in Theorem 1. The transformation to be used is, of course, Z = PY, where P is defined as in Theorem 1.

3. The space of matrices X. The solutions X of (2.6) may be written as matrices which are composed of submatrices $X_{\rho,\sigma}$, $\rho,\sigma=1$, \cdots,r , where $X_{\rho,\sigma}$ is a matrix with n_{ρ} rows and n_{σ} columns and

$$(3.1) X = (X_{\rho,\sigma})$$

with the natural arrangement of the submatrices. From (2.6) we find the equations

(3.2)
$$C_{\rho}^{2}X_{\rho\sigma} + X_{\rho\sigma}C_{\sigma}^{2} - 2C_{\rho}X_{\rho\sigma}C_{\sigma} = 0,$$

where C_{ρ} is given by equation (2.4).

If we let x_{kl} denote the element in the kth row and lth column of $X_{\rho\sigma}$ then (3.2) gives us the scalar equations

$$(\alpha_{\rho} - \alpha_{\sigma})^{2} x_{k,l} + 2\delta_{\rho} (\alpha_{\rho} - \alpha_{\sigma}) x_{k+1,l} + 2\delta_{\sigma} (\alpha_{\sigma} - \alpha_{\rho}) x_{k,l+1} + \delta_{\rho}^{2} x_{k+2,l} + \delta_{\sigma}^{2} x_{k,l-2} - 2\delta_{\rho} \delta_{\sigma} x_{k+1,l-1} = 0$$

where

$$k = 1, 2, \cdots, n_{\rho}, l = 1, 2, \cdots, n_{\sigma},$$

and where we define $x_{pq}=0$ if $p>n_p$ or q<1. Equations (3.3) have to be analyzed for various cases. We may summarize the results as follows:

THEOREM 2. The matrix $X_{\rho\sigma}$ has one of the following structures:

CASE 1. $\alpha_{\rho} - \alpha_{\sigma}$ does not vanish identically (and, therefore, not in any subinterval of (t_1, t_2) . Then $X_{\rho\sigma}$ is identically zero.

- CASE 2. $\alpha_{\rho} \alpha_{\sigma} \equiv 0$, $\delta_{\rho} = 0$, $\delta_{\sigma} = 1$. Then the last two columns of $X_{\rho,\sigma}$ are arbitrary, but all other elements of $X_{\rho,\sigma}$ vanish identically.
- CASE 3. $\alpha_{\rho} \alpha_{\sigma} \equiv 0$, $\delta_{\rho} = 1$, $\delta_{\sigma} = 0$. Then the first two rows of $X_{\rho,\sigma}$ are arbitrary but all other elements of $X_{\rho,\sigma}$ vanish identically.
- Case 4. $\alpha_{\rho} \alpha_{\sigma} \equiv 0$, $\delta_{\rho} = \delta_{\sigma} = 0$. Then we may assume $\rho = \sigma$ (see remarks before Theorem 1), and $X_{\rho\rho}$ is arbitrary.

CASE 5. $\alpha_{\rho} - \alpha_{\sigma} \equiv 0$, $\delta_{\rho} = \delta_{\sigma} = 1$. Denoting the elements of $X_{\rho,\sigma}$ by $x_{l,k}$, where $l = 1, \dots, n_{\rho}$ and $k = 1, \dots, n_{\sigma}$, and if $n_{\rho} > n_{\sigma}$, then the first two rows of $X_{\rho,\sigma}$ are arbitrary and $X_{\rho\sigma}$ has the appearance indicated below:

$$egin{pmatrix} (x_{11} & x_{12} & x_{13} & x_{14} & x_{15}, & \cdots) \ x_{21} & x_{22} & x_{23} & x_{24} & x_{25}, & \cdots \ 0 & 2x_{21} & 2x_{22} - x_{11} & 2x_{23} - x_{12} & 2x_{24} - x_{13}, & \cdots \ 0 & 0 & 3x_{21} & 3x_{22} - 2x_{11} & 3x_{23} - 2x_{12}, & \cdots \ 0 & 0 & 0 & 4x_{21} & 4x_{22} - 3x_{11}, & \cdots \ 0 & 0 & 0 & 5x_{21}, & \cdots \ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \ \end{bmatrix}$$

If $n_{\rho} < n_{\sigma}$, the role of rows and columns has to be exchanged, and if $n_{\rho} = n_{\sigma}$, the $X_{\rho,\rho}$ is triangular, but the same shape as above, except that $x_{21} = 0$.

Only Case 5 requires a more detailed analysis. However, once the explicit form of X stated above is known, it can be verified with a moderate amount of calculations which will be omitted here.

Acknowledgment. I acknowledge with pleasure the advice given me by Professor W. Magnus of New York University in the preparation of this paper.

REFERENCES

- 1. V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, N. J., 1960.
- 2. B. P. Demidovic, On some properties of the characteristic exponents of a system of ordinary linear differential equations with periodic coefficients, Moskov. Gos. Univ. Učen. Zap. 163 Mat. 6 (1952), 123-132. (Russian)
- 3. I. J. Epstein, Periodic solutions of systems of differential equations, Proc. Amer. Math. Soc. 13 (1962), 690-694.
- 4. W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954), 664.
- 5. M. J. Hellman, Lie algebras arising from systems of linear differential equations, Res. Rep. No. BR-10, New York University, Institute of Mathematical Sciences, Division of Electromagnetic Research.

EVANS SIGNAL LABORATORY, FT. MONMOUTH