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1. Introduction and main results. Let {sn} isn = a0+ai+ • • • +a„)

be a sequence of real or complex numbers. Denote by i(x) the Abel

transform of {sn}, that is

CO

KX)   m   Z) anX",

where the power series on the right is supposed convergent in the unit

circle. In addition to classical Abelian and Tauberian theorems which

give information about one of \\mxntix) and limn_M sn when the

other exists, it is possible to find estimates of

lim sup   | tixn) — Sn |     or      lim sup    | ¿(x) — sn(X) \
n-»», x„—» «> *tl,n(x)-»«o

when neither lim f(x) nor lim s„ is supposed to exist.

Some estimates investigated before now are of one of the following

two forms. The first form is the following: for any fixed number g>0

there exists a finite constant A q such that for any sequence {s„} with

a bounded sequence {nan} (» ^ 0) we have

(1) lim sup
n—» «, x—»l,n(l —z)-*Q

Sn — ¿I a„ ^ Aq- lim sup I nan\

The second form is the following: for any fixed number q>0 there

exists a finite constant Bq such that for any sequence \sn\ with a

bounded sequence {(Oao + lai + 2a2+ • • • +»#„)(»+ 1)-1} (»=0)we

have

(2)

lim sup
o-» », at-»l,n(l — i)-»s

— ¿^Iamxn

m—0

^ 73a'lim sup
ai + 2a2 + + nan

»+ 1

While investigating estimates of the form (1) and (2) we have two

problems. The first is to show that a finite constant A q, Bq satisfying
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(1) or (2) exists. The second problem is to obtain the smallest value

of the constants which satisfy (1) or (2).

In this paper we shall prove some theorems which include and

generalize known results of the form (1) and (2). In the statement of

our results y will denote the Euler constant, logarithms will have the

base e, {4"'} wiH denote the Cesàro transform of order a (a> — 1)

of the sequence {s„}, that is

M       /re + a\-1 JL /re — m + a — 1\
(3) cn    =( )    Z( )sm,       re = 0.

\re/m_o\       re — m       /

o^' will denote the Cesàro transform of order a of the sequence

{nan} (reSiO) and the binomial coefficient

/re + a\

V   re   )'

for « = 0, 1, 2, • • • , and any real a is defined by

n cr)-'-cr)-(-f)(-f)-(-f)
for re ̂  1.

It is known that for any fixed real a, aj¿ — 1, —2, —3, • • -, we have

reacry as   «
T(a + 1)

One of the main results of this paper is the following theorem.

Theorem 1. Let ß and q be two real numbers satisfying g>0,0áj3ál.

Then for any sequence {s„} satisfying |a¡Ü"| áP< + °°, for « = 0, 1,

2, • • • , we have

(5) lim sup
fi-*» ,x—*X ,n(l— x)~»fl

where

Z <*»>*"è Aq   -hm sup

c/J) 2 f» »
(6) A,   = 7 + logç+ -———- I    vPe-^log—dv.

T(ß + 1) J q q

Moreover, the constant Af* is the best in the following sense. There is a

real sequence {sn} such that 0<lim sup„,w |ajf| < + <» and the mem-

bers on both sides of inequality (5) are equal.

The special case /3 = 0 of Theorem 1 is due to R. P. Agnew [l].
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The special case ß= 1, q= 1 is due to P. Hartman [3].

That some result like Theorem 1 may be true was suggested by

the following heuristic consideration. If an inequality of the form (1)

is true for some finite constant Aq then Abel summability and nan

= 0(1) will imply s„ = 0(l) (more is known, in fact, that {s„} is

even convergent). In addition, if an inequality of the form (2) is

true for some finite constant Bq, then Abel summability and a^1'

= 0(1) will imply sn = 0(l) (in this case it is known that Abel sum-

mability of {sn} and o^° = 0(l) imply the (C, e) summability of

{sn}, for each e>0, and by the identity s„ —41) = a£\ {sn} is bounded).

Now, it is known ( [4], Theorem (6.2) and the remark after it) that if

{sn} is summable Abel and for some a^O, a^ = 0(1) then {sn} is

summable (C, a — 1+e), for each e>0, and in particular {sn} is

summable (C, [a]) which implies in particular cn(ta]) = 0(l). The truth

of (1) and (2) for finite constants Aq, Bq suggested, by the above con-

sideration, that for O^jSiSl inequality (5) may be true for a finite

constant Aqß); and this is proved in Theorem 1.

The above considerations suggest even more. They suggest the

following theorem, which, as we shall show, is true.

Theorem 2. Let the three real numbers a, ß, q satisfy q>0 and

-l<a¿|3¿a+l, Then for any sequence {sn} satisfying \a^\ — P<

+ oo , for re = 0, 1, • • • , we have

(7) lim sup
n-» » ,i—»1 ,n (1 — x)—+fl

(a)

Z amxv
(a./J) I      0»)

S C,     • hm sup I a„

where

Cq      = 7 + log q
1 - (1 - u)<

du +
r(ß + i) *> a

v"e~ log— dv.

Moreover, the constant Cqa'ß) is the best in the following sense. There is

a real sequence {sn} such that 0<lim supn<00 |aif'| < + ^ and the

members of inequality (7) are equal.

Theorem 1 is the special case cc = 0, 0^/3^1, of Theorem 2.

While proving Theorem 2 we shall obtain the following result too.

Theorem 3. Suppose a, ß and q are three real numbers satisfying

— Ka^ß^a + t, 0<q. Then for any sequence {sn} with a bounded

sequence {a^} we have

(8) lim sup I cn
(a) («I Aa,ß1

^ Dq      -lim sup | an
c/s)



1963]

where

TAUBERIAN CONSTANTS 231

D™ =  f
J 0

1   (1   _  u)a _   (1   _  U)ß
du.

Moreover, the constant DQa,ß) is the best in the following sense. There is

a real sequence {sn} such that 0 <lim sup„..M | a^f'| < + °° and the mem-

bers of inequality (8) are equal.

The special case a = Q, ß=l of Theorem 3 is a special case of a

theorem of V. Garten [2].

In §3 we shall give some results concerning relations between limits

points of a sequence {sn} and the limit points of its Abel transform

t(x).

2. Proof of Theorem 2 and Theorem 3. In the proof of Theorem 2

and Theorem 3 we shall use the following results.

Theorem A. Suppose [sn] is any bounded (real or complex) se-

quence. Let \Cn(x)} (w = 0, 1, 2, • • • ) be a sequence of functions defined

for 0 <x < + °° and satisfying

(9) lim c„(x) = 0       for n = 0, 1, 2, • • • ,
X—* w

and

CO

(10) lim sup 23 cn(x)   = M < + «.

Then we have

(11) lim sup   2 Cn(x)sn   = If-lim sup| sn\ .

Moreover, M is the best constant in the following sense. There exists a

bounded sequence [sn\ (real if all the c„(x) are real) satisfying

0<lim supn,w I 5n| < + =0 and such that the members of inequality (11)

are equal.

Theorem A is due to R. P. Agnew [l].

Theorem B. Suppose a> — 1. Then for any sequence {sn} we have

JL (n — m — a — 1\ /m + a\   ia)
(12) i„ = Z ) )¿\       forn = 0,1,2,-■-,

m-o \       n — m       I \   m   /

and

/-11\ I    (a) <a) 1 (a) x 10
(13) n\Cn     — Cn-l\   = On   , for » =   1, 2, •  •  • .
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If a and ß are two real numbers satisfying —l<a<ß then for any

sequence {sn} we have

(a) _ in + «X-1  "  in - m + a - ß - l\ im + ß\ OT

(14) \    »    /    m_o \ n — m J\   m   /  '

for n = 0, 1, • • • .

This theorem is well-known and easily proved.

Theorem C.  Suppose a and ß are two real numbers satisfying

— Ka^ß. Then for 0^x<l and m= 1, 2, 3, ■ • • , we have

™/p + a-ß-l\/p + m + cA-1
Z ) )   (p + m)-ix^+-

(151     " ^ P + m    I

= !   (x - t)nm-l(i - ty~adt,
J 0

i(>+°->-1)(p+m+"Y(,+«)-
„,.     p=o\ P /\    P + m    /
(16)

f1 T(ß+l)(m-l)l
=      (i - tyr-^dt = —- ^ o,

J o Tiß + m+V)

and

±(p + "-ß-1)(P+m+")"(p + -r'
(17)     P= * P + m   /

=  f   {(1 - ty - (1 - t)a}r~ldt.
J o

Proof. We have, for 0^x<l, by uniform convergence,

/(x - t)atm-l(\ - ty-"dt

o

Cx "/p + a-ß-l\
=       (*-/)"Z( )t^-Ht

Jo P=o\ p /

« /p + a - ß - l\ rx
= ¿_ ( ) |    (x - t)atp+m-ldt

p=o\ p / J o

™/p + a-ß-l\/p + m + «X-1
= Z ) )   iP + m)~lxP+m+".

P=o\ p / \   p + m   /

This proves (15). By Abel's theorem, since the series in the left side

of (16) is convergent, we have
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p=o\ p / \   p + m   I

= lim        (a
iti J(

p I \   P + ni

(x - tytm-i(\ - ty-adt

(and by the substitution t = xu)

adu= lim xm+a I    (1 - ti)aum-\\ - xuy-"a

zTl J 0

(and by Beppo Levi's theorem for integration of monotonie sequences)

=  I    (1 — uyum~ldu.
J 0

This proves (16). The proof of (17) is now immediate. Q.E.D.

Theorem D. Suppose ß is a real number satisfying ß> — 1. Then

for the series Zr.o an, where, a0 = 0,

an = ~n'{í~C~l~1)}        f°rn=i>2>--->

we have a^ = 0 and af = 1 for w= 1, 2, • • • .

The proof follows immediately from (14).

Theorem E. Let a be a real number satisfying a> — 1. Then the

convergent series Zn-oö» where a0 = 0 and

1 In - a - 1\
an = — ( ),       for re = 1, 2,

re \       re       /
,

is summable (C, — 1+e) (to its sum) for each e>0; in particular the

series is summable (C, a) (to its sum).

Proof. Our series is convergent because, for a = 0, 1, 2, • • ■ , its

terms are zero from some place on, and for a> — 1, a 5^0, 1, • • -,

ak>-^{T( — a) }-1k~ia+2) as k—>°°. Now, wa„—>0 as re—»°°, therefore, by

a well-known theorem, our series is summable (C, — 1 +e) (to its

sum) for each e>0. Since a> — 1 our series is also summable (C, a)

to its sum. Q.E.D.

Theorem F. Suppose a and ß are two real numbers satisfying

— Ka-^ß^a + l.Thenforanysequence {sn} wehave,forn=i,2, • • -,

..   . M (ß)        A ,        W)
(lo) C„       —  Cn      —¿^1 °n,raT
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where

(19) bn,r = 0      forlSr^n,

» C l (1 - «)» - (1 - re)"
(20) lim   2^&»,r=   I      -¿M,

«-»■»    r_i Jo M

\    r    /,_o\ Í /\    p + r    / r

for r = 1, 2, - • • ,

(21a) lim 6„,r = 0      /or r = 1, 2, 3, • • • .
n—*oa

Proof. We have, by (13), for re= 1, 2, • • • ,

(a) 03)   _   V   J_     'a>   _   V   Jl     <|S)

m=l   »» r=l     *"

(and by (14), since a(0a) = a*?' = 0)

- y Jl/w + a\_1 y (m ~r + a ~ß ~ 1N\ (r + ß\ W - T — 0S)

m.i   m\   m   /     r=i\ m — r )\r)r        r=1  r

(and changing the order of summation)

= yar\(r+ß)±(m-r+a-ß-iV>(m+aY--\

r_i        l\   f   /m^V i» — r /      \   m   / r)

This proves (21). Now, for £>0,

C+V")<i
therefore

(and by (16))

^r + j8\rOS+l)(r- 1)!       1       1        1

<\y T(r + ß + 1) r       r        r
= 0.
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This proves (19) and (21a). Now, by Theorem D, we have for the

special series zln-o a» with ao = 0,

a„ = — y-y )\        for»>0,

since a(oß) = 0 and ö<f> = 1 for w>0,

Va (a) -    (/S

A   1    («)      A   1    W)
=  2-1  - an>     ~2-,  -' am

m_i m m=i tn

(and since

fcW      ,._._,» +M/. — l\_¿/.-í-l\l

»(.        \       »       /; I» \       »       /       » \       »       /J

-^-"(-¿{ictVtC":-1)})
m-l    W

therefore, by Theorem E, since a> — 1)

^ A }_/k - a - 1\ _   -   J_ /* - ß - 1\

fc_l     £    \ £ / jb=l    ß    \ ¿ /

(and by (17) with a = 0 there and ß there is either a or ß here)

r11 - (l - 0"        Cx
-dl +

•/ 0 t Jo

-/' •J 0

11 — (l — ¿)Œ,     fJ 1 - (1 - /)s

1 (1 _ ,)* _ (1 _ ^

This completes the proof of our theorem. Q.E.D.

Theorem G.  Suppose ß and q are two real numbers satisfying

ß> — 1, q>0. Then for any sequence {sn} we have

00 n co

(22) cn    — 2~1 a'"x   = Z dn,m(x)am   —    Z   d„,m(x)am
m=0 m=™l m=;if I

(23) á„,m(x) ̂  0       form, n = 1,2,3, ■■■ ,     0 g x < 1.
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(23a) lim dn¡m(x) = 0       for m = 1, 2, • • •
n—»co ,a:-+l,n(l — x)—m

and

n

lim Z dn,m(x)
B-»»,i-»l,n(l—i)->a m=i

(24)
r1 1 - (1 - «)" 2       /* °° o

= Y + log o —  I     -¿re -1-I    fl"e~" log — dv.
Jo « r(a+l)Jg 5

Theorem G is a special case of a general theorem proved for the

[j, f(x)] transformations in [5]. See the proof of Theorem (3.1) and

Example (4.4) there.

Proof of Theorem 3. The proof of Theorem 3 follows immediately

from Theorem F and Theorem A. Q.E.D.

Proof of Theorem 2. We have for 0^x< 1

(a) _ V      m —   M _   (|3) _i_   m _ V
t/n / . amX Cn Cn     ~T~ Cn      ~~   / . amX

m=0 m—a

(and by Theorem F and Theorem G)

= Z {t>n,r + dn,r(x)}ar    —   y.  dn,r(x)ar   .

r=l r=a+l

In order to complete the proof it is enough, by Theorem A, to show

that

/ = lim | bn,r + dn,r(x) \   =0        for r = 1, 2, • • • ,
n-»»,i->l,»(l— ¡t)->a

and

J= Hm <   ̂    I  bn.r + dn,r(x) \    +     Z      I  dn,r(x) | >   =  Cq'     .
n->M,i->l,n(l-z)-»j    \. r=i r=n+l I

By Theorem F and Theorem G we have 1=0. Now, by (19) and (23),

n co

/  =    Hm     X) *n(r + Hm X) ¿n,r(»)
n—»■«>    r==i n-*»,a:-*l,n{l—i)-*ff   r=x

(and by (20) and (24))

_      (a.«

— o3

Q.E.D.

3. Conclusion. It is easy to prove the following result for the num-
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ber Cj"'"' as a function of q>0.

Theorem 4.  Suppose a and ß are two real numbers satisfying

-Ka^ß^a + l. If for q>0 C(pß) is defined by (8) then

(25) Cq'0) ^ 0       forq> 0.

(26) Cq      is a continuous function for q > 0.

(27) limCÎ",fl) = + 00.

oí »

(28) lim Cq'ß) = + ».
eio

(29) Cg '    Aas an absolute minimum for q>0 at the point go

which satisfies the equation

1

ros +1) ~

ifw 1

+ 1W.. 2

Denote

C        =   mm   Cfl
0<g<»

Denote by 2' a limit point of a sequence { j„} . We denote by z" a

limit point, as x—>1, of the Abel transform t(x) of the sequence \sn\.

Then we obtain from Theorem 2 and Theorem 4 the following result

concerning limit points 2' and 2".

Theorem 5. Suppose the two real numbers a and ß satisfy —Kce

^(3 = a + l. Then for any sequence [s„] with a bounded sequence [a'®}

we have:

(i)  To each z' corresponds at least one z" such that

(30) \z'-z"\   eC(a-ß)-\imsup\anß)\.
n—»oo

(ii)  To each z" corresponds ai least one zf such that

(31) |z"-2'|   =?C(",fl).limsup|a,W|.
n—►»

We do not know if the constant C-a'ß) in (30) and (31) is the best

(the smallest) satisfying these inequalities.
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WHITTAKER'S CONSTANT FOR LACUNARY
ENTIRE FUNCTIONS

HERBERT S. WILF

1. Introduction. Let

(i) /(*) = z -*
r-0    V\

be an entire function of exponential type r < <*>. We are concerned

here with two problems which are closely related to the determination

of Whittaker's constant, that is to say, with theorems to the effect

that if f(z) and each of its derivatives have some zeros in the unit

circle then t cannot be too small.

Definition 1. The constant Wp is the largest number W for which

the following assertion is true: "Let the coefficients br of f(z) vanish

except for values of p in the arithmetic progression g,g-r-£,g + 2£, ■ • •.

If /(z), /'(z), • ' ' each have a zero in |z| <1, and if r<W, then

/«-O."
One sees, by considering /(<z)(2) that Wp is independent of q. Wx is

Whittaker's constant, whose value is unknown [l]. The case p = 2

has also been investigated [2; 3].

Definition 2. The constant wp is the largest number w for which

the following assertion is true: "Let f(z), f'(z), - - - each have at

least p zeros in |z| <1. If r<«, then/(z) =0."

Again ux=Wx is Whittaker's constant. Erdös-Renyi [6, equation

(15)] have shown that

(2) cop £ p/e       (p=\,2,- ■■).

We shall give a somewhat better bound.
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