RAMIFICATION IN ELLIPTIC MODULAR FUNCTION FIELDS
DONALD L. McQUILLAN

1. The field of elliptic modular functions of level # is a finite galois
extension K of the field C(j) generated over C by the Weierstrass
absolute invariant j. Furthermore, the galois group is LF(2, n)
=SL(2, Z/nZ)/ + I, and the genus g of K is given by

20—2=1/12-(n — )2 [T (1 — 1/¢%

qln

for n>2 (g=0for n=1, 2). If p is a prime number not dividing # and
if & is an algebraic closure of GF(p) =Z/pZ (k can also be an algebraic
closure of Q), Igusa [4] constructed a galois extension of k(j) with
the same galois group and the same genus. On the other hand, if the
level z is a prime number ¢, Hecke [3] proved that K/C(j) is uniquely
determined by the two properties. The purpose of this short note is to
extend this theorem of Hecke in the following way:

TueorREM. Let K/k(j) be a galois extension of genus g (n=gq) with
LF(2, q) as galois group. Then, the ramification of K/k(j) is uniquely
determined. Hence, (as in Igusa's extension) K/k(j) is ramified over one
point with index q and over two other points with indices 2, 3 for p#2, 3,
over one other point with the teirahedral group as inertia group (second
ramification group =trivial) for p=2 and with the dihedral group of
order 6 as inertia group (second ramification group =trivial) for p=3.
Moreover, in the case p£2, 3, (if we fix three points with ramification
indices 2, 3, q) the extension K/k(j) is uniquely determined.

2. We shall start proving the theorem. Since the case ¢g=2 can be
treated separately (and rather easily), we shall assume that ¢ is an
odd prime. Suppose that K is ramified over k(j) at j=a1, a2, * - * , G»
and that

T(a;) DVila:)) DVala) D - - -

is a sequence of the inertia group and the first, second, - - - ramifica-
tion groups at a place of K lying over ;. Then, it is a normal sequence
(unique up to an inner automorphism of LF(2, ¢)) such that Vi(a:)
is the unique p-Sylow group of T'(e:) with cyclic factor group. In
particular, the commutator group of T'(a;) has to be a p-group. Now,
thanks to Gierster [1], we know all subgroups of LF(2, ¢): A sub-
group of LF(2, ¢) is
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(i) a cyclic group Cn of order m where m=g, m[ (g—1)/2 or
m|(g+1)/2,

(ii) a dihedral group Ds, of order 2% where #|g¢—1 or n|g+1,

(iii) a metacyclic group of order gf where tl (g—1)/2 with C, as
commutator group, or

(iv) a tetrahedral, octahedral or icosahedral group. Because of the
property of T'(a;) mentioned above, candidates for T'(a;) are limited.
In fact, they are C,, in (i), D, in (ii) with =" (p odd) and the tetra-
hedral group. This being remarked, the “relative genus formula”
applied to K/k(j) gives

D (Ei—1)/e;=(2—w) +1/6 — 1/a

where
e; = ord. T(a.~),
E; = (ord. Vi(a;) — 1) + (ord. Va(a)) — 1) + - - -

Since the right side of the genus formula is not integral at g, at least
one ¢;, say ey, is a multiple of ¢. Then T'(a,) is either C, or the tetra-
hedral group (with ¢=3, p=2). In the second case, K contains a
cyclic subextension of k(j) of degree 3, hence e,, say, is also a multiple
of ¢g=3. If T(a,) is again the tetrahedral group, we get e;=e,=12,
E,, E;23, and this will bring a contradiction. Hence, we can always
assume that T'(a:) is C,. This implies

2 (B = 1)/e = (2 — w) + 1/6.

>1
Since ;22 and E; =0, therefore, we have w=<3 and certainly w=2.
Suppose, first, that w=3. Then, we see immediately that e,=2.
e3=3 with E,=FE;=0, hence p2, 3. Suppose, next, that w=2,
Then, we have e;=6(E;—1) and this is a multiple of p. Consequently,
T'(as) is Cm in (i), D3, in (ii) with %= 3" or the tetrahedral group (with
Va(as) =1). In the second case, we see that T'(az) = Ds (with Va(as) =1).
We shall show that the first possibility has to be rejected entirely.

3. We recall [1] that subgroups in (i), (iii) are unique up to inner
automorphisms of LF(2, ¢). We denote by 2 the subextension of k(j)
which corresponds (by the theory of Galois) to the group of linear
transformations x—a?x+b with ¢ in GF(¢)* (= multiplicative group
of GF(g)) and b in GF(g). Using Hilbert’s galois theory, we shall cal-
culate the relative genus formulas for K/Z and for Z/k(j) (cf. [4,
pp. 473-474]). In doing this, we can assume that T'(a,) is the group of
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linear transformations x—x+b with b in GF(g). Suppose, first, that
T(as) =C,, with 62| (g—1)/2. Then, we can assume that T'(as) is the
subgroup of order e; of the group of linear transformations x—a%x
with a in GF(g)*. Thus, if g, is the genus of Z, we get

2g—2=(q—1)?%24q(g—1)/es- ((e2— 1)+ E5) + g(g—1)/2- (280 — 2),
250—2=(g— 1)+ (g —1)/es-((ea — 1) + E) — 2(g+ 1).

By eliminating go, we get g(¢g+1)(¢g—1) =0. This is a contradiction.
Suppose, next, that T(a,) =C., with e2| (¢+1)/2. Then, in the same
way we get

26—2=(g— D¥2+ glg — 1)/2- (280 — 2),
200—2=(— 1)+ (g+ 1)/ea-((e2— 1) + E5) — 2(¢ + 1),
and hence ¢(¢g+1)(¢—1) =0. This is a contradiction.

4. Finally, we shall indicate how the uniqueness of K/k(j) follows
from the information about ramifications in the case p2, 3. Sup-
pose that K1/k(j), Ko/k(j) are two such extensions, i.e. with the same
genus g and with LF(2, ¢) as galois group. By an automorphism of
k(j), we can make an adjustment so that K./k(j), K»/k(j) are rami-
fied over the same three points a1, as, a3 with the same indices. Con-
sider their compositum Q/k(j) (in some algebraic closure of k(j)).
Then Q/k(j) is ramified only over a,, as, a3 and, in fact, tamely. Let
G be the galois group of Q/k(j) and let Hy, H, be the normal subgroups
of G which correspond to K;, K,. Then, by a general result of Groth-
endieck [2], we can pick o1, 03, 03 from inertia groups over a1, as, a;
which generate G and which satisfy oi0:05=1. Let ¢/, ¢!’ be the
images of ¢; in G/Hy, G/H,. Then, by a lemma of Hecke [3, p. 574],
there exists an isomorphism G/H; ~ G/H, in which ¢! and ¢!’ cor-
respond to each other. This is possible (if and) only if H;=H, com-
pleting the proof.
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