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1. Introduction and summary. Somewhat tangentially to a recent

study [l], we happened to notice an inequality which supplements

one of Hardy and Littlewood, [2, Theorem 7, p. 95].

For an integrable function / defined on the open unit interval

(0, 1), the average value of / over a set J of positive measure is

A(J) = (P(J))~lfjf(t)dt where P(J) denotes the Lebesgue measure of

/. The maximal function M=M[f] studied in [2] is obtained by let-

ting M(x) be the least upper bound of A (J) over all intervals J which

contain x. Recall that the distribution Pg~l of a real-valued measura-

ble function g is defined for Borel sets B by (Pg~l)(B) =P(g-1(P>)).

It turns out that there is a function / that has the same distribution

as /, but does not otherwise depend on /, for which fl<p(M(x))dx

ikfl4>(M(x))dx for all monotone increasing functions c/>, where

M=M[J] is the maximal function corresponding to/. Though there

are usually many such / there is one which is essentially unique and

natural. Namely, a symmetric rearrangement of / is a function 5 on

(0, 1) with the following three properties: (i) 5 is symmetric about

»=1/2; (ii) 5 is nondecreasing for 0<x<l/2; (iii) s has the same

distribution as /. Let M denote the maximal function associated

with s, that is, M=M[s].

We can now state our result.

Theorem. For all bounded monotone increasing functions <¡>,

(1) f <¡>(M(x))dx g f <b(M(x))dx.
Jo Jo

Of course, the boundedness of <p is n°t at all important. All that

matters is that both integrals in (1) exist.

2. Three lemmas. Since the indefinite integral of an integrable

function is continuous, the first lemma is an immediate consequence

of a celebrated lemma of Riesz [3, p. 6].
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Lemma 1. Let f be an integrable function defined on an open interval

and let L be the set of x for which there existsz>x such that f\f>0. Then

Lemma 2. Let f be an integrable function defined on an open interval,

let S be the set theoretic union of all intervals J for which fjf>0, and

let S~ be the set of xES for which fix) <0. Then

(2) 2 r / + r / è o.
J />0 J s

Proof. Let A be the set of x for which there exists z<x such that

flf>0. Then /b/^0 just as /i/i£0 in accordance with Lemma 1. It

is easily verified that 5 = AWA. Let T = RH\L, let S+ be the set of

xES for which/(x) >0, and compute thus.

(3)

0Ú  f/+ f/ =  f f+ f fû f   f+ f f

= 2 r /+ r /<s2 r /+ f /.
J S+ J S J f>0 J R

This proves the lemma.

A subset B of the domain of a real-valued function g is critical (for

g) if there exists some t, — °o ̂ i< » such that A contains every x

for which g(x) >¿ but no x for which g(x) </.

Lemma 3. Let g, strictly negative and integrable, be defined on some

measure space (U, 11, u). Suppose that fßg^fßg where B is critical for

g and ££11, and AGOl. Then u(E) úu(B).

Proof. If w(A) = 0, then 0^fEg^fBg = 0, implies that fEg = 0.
Since g<0, u(E) =0^m(A). We may therefore suppose that u(B) >0.

Under this assumption, since g<0, any t for which B is critical is

negative. At the other extreme, if the only ¿ that made B critical were

t= — oo, then B would be U and u(B)=u(U)^u(E). Henceforth,

suppose that there exists at, — <x> <t<0, such that B contains all x

for which g(x)>t and no x for which g(x) <t. Of course, g^t on

E — B, and g^t on B—E. Therefore,

(4) f     g^tu(E-B); f     g^tu(B-E).
"  E—B J B—E

Also,

(5) f     g= f g~ f     g* f g- f     g= f     g.
J E-B       Je       J eí~\b        J b        J eC\b        J b-b
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Inequalities (4) and (5) imply that tu(B—E)-è.tu(E — B). Since

— oo<t<0, u(B — E)^u(E — B), which, of course, implies that

u(B) ^u(E). The proof of Lemma 3 is complete.

3. Proof of Theorem. Notice that 5 as defined in Lemma 2 is the

same as the set of x lor which M(x) > 0. Let S be the set of x for which

M(x) >0. Our principal task remaining is to show that P(S) ^P(S).

Setting aside the trivial cases in which P(S) =0 or P(S) = 1, notice

that S is an interval of length <1, symmetric about 1/2, and is

therefore a critical set for s. The defining property of S together with

its symmetry about 1/2 easily imply

(6) 2 f   s+ is = 0.
J «>o        J *

Since /„>0 s = f/>o f, (6) and (2) imply

(7) r / = r *.
•J s~        J s~

Since s and / have the same distribution, and S~ is critical for s

restricted to the set where s<0, there exists a set B on which /<0,

critical for/, such that

(8) ([s=  f   f,    and    P(S-) = P(B).

The first half of (8) together with (7) implies

(9) f   f^  f f

Apply Lemma 3 to (9) to conclude that P(S~)^P(B), which, in

view of the second half of (8), gives P(S-)èP(S~). Then P(S)

^P(l^0)+P(S-)^P(s^0)+P(S-)=P(E). ReplaceSby M-^O, <*>)
and S by Ê'^O, <*>), and conclude that PM~l(Q, «>) gPM-^O, «>).
To see that PM~l(t, <x)^PM~1(t, <») for all t, merely notice that

the 5, M, and M which correspond to/—t are obtained from the s, M,

and M which correspond to / by subtracting the same constant /.

Consequently (1) holds whenever <p has the form <p(r) = 1 for r>t and

<p(r)=0 for r^t. Since (1) is a linear inequality, it holds for finite

nonnegative linear combinations of such <p. Since any bounded mono-

tone nondecreasing continuous <p can be uniformly approximated by

such step functions, and since any bounded monotone nondecreasing

<j> is a pointwise limit of a uniformly bounded sequence of such con-
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tinuous <p, the dominated convergence theorem of Lebesgue applies

to complete the proof of the Theorem.

4. A Remark. The theorem above is of the same nature as the

"one-sided" theorem, Theorem 5 in [2, p. 92]. Hardy and Littlewood

deduce their theorem from its interesting discrete analogue [2, Theo-

rem 2, p. 84], Such a procedure was not open to us, for the discrete

analogue of our theorem does not hold. Consider for example, the

possible rearrangements of the finite sequence 1, 2, 4, 8, and verify

that among their "two-sided" maximal functions none dominates all

the others.
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