ON THE QUOTIENT OF ENTIRE FUNCTIONS OF LOWER ORDER LESS THAN ONE

ANDERS HYLLENGREN

The origin of this note is a question in the theory of functions: "If $f_{1}(z)$ and $f_{2}(z)$ are two entire functions of lower order less than one and if $f_{1}(z)$ and $f_{2}(z)$ have the same zeros, is $f_{1}(z) / f_{2}(z)$ a constant?" This is one of 25 problems published in Bulletin of the American Mathematical Society, January, 1962, pp. 21-24.

The solution of this problem is that the quotient $f_{1}(z) / f_{2}(z)$ is not necessarily a constant. It is even possible to find such entire functions of lower order zero. To do this we introduce some definitions.

$$
\begin{aligned}
a_{n} & =2^{(4 n)!}, \quad b_{n}=2^{(4 n+2)!}, \\
P_{n}(z) & =\left(1-\frac{z}{a_{n}}\right)^{a_{n}}\left(1+\frac{z}{b_{n}}\right)^{b_{n}}, \\
f_{1}(z) & =\prod_{n=1}^{\infty} P_{n}(z), \quad f_{2}(z)=e^{-z} f_{1}(z) .
\end{aligned}
$$

Now $f_{1}(z)$ and $f_{2}(z)$ are different entire functions with the same zeros. We denote

$$
M_{\nu}(r)=\max _{|z|=r}\left|f_{\nu}(z)\right|, \quad \nu=1,2
$$

We shall prove that the lower order of each of these functions is zero i.e.

$$
\underset{r \rightarrow \infty}{\liminf } \frac{\log \log M_{\nu}(r)}{\log r}=0, \quad \nu=1,2 .
$$

We first estimate $\log \log M_{1}(r)$ for $r=2^{(4 m+3)!}$. Obviously, for $|z|$ $=2^{(4 m+3)!}$ we have

$$
\left|P_{n}(z)\right|=\left|1-\frac{z}{a_{n}}\right|^{a_{n}}\left|1+\frac{z}{b_{n}}\right|^{b_{n}}<|z|^{a_{n}+b_{n}}
$$

i.e.,

$$
\log \left|P_{n}(z)\right|<\log 2 \cdot(4 m+3)!\left(a_{n}+b_{n}\right)
$$

which implies
Received by the editors March 16, 1962.
$\log \left|P_{1}(z) \cdot \cdots \cdot P_{m}(z)\right|$

$$
<\log 2 \cdot(4 m+3)!\left(a_{1}+b_{1}+a_{2}+b_{2}+\cdots+a_{m}+b_{m}\right)
$$

Roughly estimated

$$
\log \left|P_{1}(z) \cdot \cdots \cdot P_{m}(z)\right|<(4 m+3)!b_{m}=(4 m+3)!2^{(4 m+2)!} .
$$

For $P_{m+n}(z), n \geqq 1$, we use another estimate. The following simple inequalities are well known

$$
\begin{array}{ll}
\left|\log \left(1-\frac{z}{a}\right)^{a}+z\right| \leqq \frac{|z|^{2}}{a} & \text { for }|z|<\frac{a}{2}, \\
\left|\log \left(1+\frac{z}{b}\right)^{b}-z\right| \leqq \frac{|z|^{2}}{b} & \text { for }|z|<\frac{b}{2} .
\end{array}
$$

With $a=a_{m+n}$ and $b=b_{m+n}$ the estimate becomes

$$
\begin{aligned}
\log \left|P_{m+n}(z)\right| & \leqq\left|\log P_{m+n}(z)\right| \\
& =\left|\log \left(1-\frac{z}{a_{m+n}}\right)^{a_{m+n}}+\log \left(1-\frac{z}{b_{m+n}}\right)^{b_{m+n}}\right| \\
& \leqq\left|\log \left(1-\frac{z}{a_{m+n}}\right)^{a_{m+n}}+z\right|+\left|\log \left(1+\frac{z}{b_{m+n}}\right)^{b_{m+n}}-z\right| \\
& \leqq \frac{|z|^{2}}{a_{m+n}}+\frac{|z|^{2}}{b_{m+n}}<\frac{2|z|^{2}}{a_{m+n}}=2^{1+2(4 m+3)!-(4 m+4 n)!}<2^{-n} .
\end{aligned}
$$

Thus the infinite product

$$
P_{m+1}(z) \cdot P_{m+2}(z) \cdot \cdots \cdot P_{m+n}(z) \cdot \cdots
$$

is estimated by

$$
\log \left|P_{m+1}(z) \cdot P_{m+2}(z) \cdot \cdots\right|<\sum_{n=1}^{\infty} 2^{-n}=1 .
$$

For

$$
M_{1}(r)=\max _{|z|=r}\left|\prod_{n=1}^{\infty} P_{n}(z)\right|
$$

we then get

$$
\begin{aligned}
\log M_{1}(r) & <(4 m+3)!2^{(4 m+2)!}+1<2^{2 \cdot(4 m+2)!} \\
\log \log M_{1}(r) & <2 \log 2 \cdot(4 m+2)!
\end{aligned}
$$

where $\log r=\log 2 \cdot(4 m+3)!$. Thus

$$
\frac{\log \log M_{1}(r)}{\log r}<\frac{2}{4 m+3}<\frac{1}{m} .
$$

This estimate implies that the lower order of $f_{1}(z)$ is zero. We now consider $\log \log M_{2}(r)$ for $r=2^{(4 m+1)!}$ and in the same way as before we obtain

$$
\begin{aligned}
\log \mid P_{1}(z) \cdot P_{2}(z) \cdot & \cdots \cdot P_{m-1}(z) \mid \\
& <\log 2 \cdot(4 m+1)!\left(a_{1}+b_{1}+\cdots+a_{m-1}+b_{m-1}\right) \\
& <(4 m+1)!b_{m-1}=(4 m+1)!2^{(4 m-2)!}
\end{aligned}
$$

Then we consider $P_{m}(z) \cdot e^{-z}$. We have

$$
\begin{aligned}
& \log \left|P_{m}(z) e^{-z}\right| \\
& \quad \leqq \log \left|1-\frac{z}{a_{m}}\right|^{a_{m}}+\left|\log \left(1+\frac{z}{b_{m}}\right)^{b_{m}}-z\right| \\
& \quad<\log |z| a_{m}+\frac{|z|^{2}}{b_{m}}=\log 2(4 m+1)!2^{(4 m)!}+2^{2 \cdot(4 m+1)!-(4 m+2)!} \\
& \quad<(4 m+1)!2^{(4 m)!}+1
\end{aligned}
$$

For $P_{m+n}(z)$ we obtain as before

Hence

$$
\log \left|P_{m+n}(z)\right|<2^{-n}, \quad n \geqq 1 .
$$

$$
\log \left|P_{m+1}(z) \cdot P_{m+2}(z) \cdot \cdots\right|<1
$$

For

$$
M_{2}(r)=\max _{|z|=r}\left|P_{1}(z) \cdot \cdots \cdot P_{m-1}(z) \cdot P_{m}(z) \cdot e^{-z} \cdot P_{m+1}(z) \cdot \cdots\right|
$$

we obtain
$\log M_{2}(r)<(4 m+1)!2^{(4 m-2)!}+(4 m+1)!2^{(4 m)!}+1+1<2^{2 \cdot(4 m)!}$.
Now $\log \log M_{2}(r)<2 \log 2 \cdot(4 m)!$ and $\log r=\log 2 \cdot(4 m+1)!$. Thus

$$
\frac{\log \log M_{2}(r)}{\log r}<\frac{2}{4 m+1}<\frac{1}{m}
$$

which implies that the lower order of $f_{2}(z)$ is zero. The proof is now complete.

Kungl. Tekniska Högskolan, Stockholm

