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Let p(z) be a polynomial of degree re having all its zeros in | z| = 1.

Then according to Walsh's generalization of Laguerre's theorem [3,

Lemma 1, p. 13]
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We shall obtain a result for entire functions which generalizes (1).

To see what to expect, note that p(eiz) is an entire function f(z) of

exponential type of a special kind: if h(0) is its indicator, we have

h(—ir/2)=n, but h(ir/2)^0. If p(z) has no zeros in \z\ >l,/(z) has

no zeros in y<0.

Let us consider, then, entire functions f(z) of exponential type r

with l.u.b._B<I<„ |/(x)| =1, h(—w/2)=n, h(ir/2)gL0, and/(z)^0 for

y<0.

Theorem. l.u.b._oo<j<„ |/'(x)| èr/2.

To prove the theorem put g(z) =f(z)e~"'12. Then \.u.b—x<x<x \ g(x) \

= 1 and g(z) is of exponential type r/2 ; moreover the indicator h9 of g

satisfies hg( — ir/2)^hg(-ïï/2). Since g(z) has no zeros for y<0 it be-

longs to the class P discussed in [l, pp. 129-131] and can be repre-

sented in the form

g(z) = Azme" n Í1-J exp < z Re Í — H

where   lm(z„)=0   and   2 Im c = h0(—ïï/2)-hg(ir/2) =0.   Thus   for

— » <x< »
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ln\\-—-\ = Imc-r £
I g(x)I „=i. g(x)J „=i (x — an)2 + iy — bn)2

where zn = an-H&„, &„^0. The right hand side is non-negative. Hence
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Let e be any number >0. There exists a number xo such that — oo

<xo < =0, and |/(x0) | > 1 — e. So that

l.u.b.     |/'(*) |  = |/'(xo)|  = |/(x„)
— oo <Cx < oo

/'(*o)
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Making e—>0 we get the result.

A theorem of Boas [2, Theorem 2] states that if f(z) is an entire

function of exponential type r with |/(x) | Û1 for real x, h( — ir/2) = r,

h(ir/2)=0, and /(z) ^0 for y>0, then for real x

l/'(*)|   =J-

Combining this result with the conclusion of our theorem we obtain

the following

Corollary. If f(z) is an entire function of exponential type t with

l.u.b._co<1<00 |/(x)| =1, h( — ir/2)=T, h(ir/2)=0, and f(z) has all its

zeros on the real axis, then

l.u.b.     \f'(x)\  =~-
— « <X< 00 ¿
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